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 12.1. Introduction 

 In some epidemiological or clinical studies, the response of interest con-
sists of a count, such as the number of cells that show definite evidence of dif-
ferentiation, or the number of repeated infections experienced by a subject. 
The values recorded will be only non-negative integers.

  In some instances, it may be possible to analyze observed data that are 
counts using the methods of multiple linear regression that we described in 
chapter 10. However, regression methods are available that are better suited to 
response measurements that are counts, and we discuss the most commonly 
used method, which is known as Poisson regression, in this chapter.

  Because it often provides a satisfactory representation for the variability 
observed in count data, the Poisson distribution plays a role in their analysis 
that is similar to that of the normal distribution in multiple linear regression, 
and the binomial distribution in logistic regression. The first occasion when 
the Poisson distribution was used to characterize observations that were counts 
appears to have occurred at the end of the 19th century, when Ladislaus von 
Bortkiewicz [21] showed that, over a 20-year period, the annual number of 
deaths attributed to horsekicks suffered by corpsmen in each of 14 Prussian 
army corps could be fitted very convincingly by a Poisson distribution. How-
ever, the name Poisson derives from a French mathematician, Siméon-Denis 
Poisson, who derived the mathematical form of the distribution.

  A more recent, slightly unusual, medical example in which the Poisson 
distribution was used to summarize the variation in observed counts was in 
the analysis of a randomized trial, conducted by Fallowfield et al. [22], that was 
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designed to study the effect on physician communication skills of an intensive 
three-day training course.

  Here, we ignore additional trial complexity, and consider a comparison of 
80 doctors who were randomized to attend the three-day course with 80 doc-
tors who were randomly chosen not to attend. We also restrict attention to a 
single outcome measure, namely the number of focussed and/or open ques-
tions asked by a physician during a patient consultation that occurred three 
months after the course ended, or three months after randomization for those 
physicians who did not receive any communication skills training. The course 
was designed to increase the frequency of such questions. For each physician, 
data were available from two consultations; to avoid undue complexity, we ig-
nore the expected correlation between counts for the same physician and sim-
ply assume we have 160 observed counts for both the treatment group, i.e., 
those physicians who received training, and the control group.

   Table 12.1  summarizes the results of a Poisson regression analysis of the 
number of focussed and/or open questions asked. The regression model in-
cluded three explanatory variables that coded course attendance (yes = 1, no = 
0), physician sex (female = 1, male = 0) and physician seniority (senior = 1, ju-
nior = 0). Readers will observe immediately that the format of this table is 
similar to those we first introduced in chapter 10 and subsequently encoun-
tered in chapter 11.

  12.2. The Model for Poisson Regression 

 The theoretical formula from which we can calculate probabilities for 
counts that follow a Poisson probability function is characterized by a single 
parameter that is usually represented by the Greek letter  � . Conveniently,  �  
turns out to be the theoretical mean of the corresponding Poisson distribution, 

Table 12.1. The results of a Poisson regression analysis of the number of focussed 
and/or open questions asked by a physician during a patient consultation

Explanatory 
variable

Estimated
regression
coefficient

Estimated
standard 
error

Test 
statistic

Significance 
level
(p-value)

Course 0.24 0.05 5.06 <0.001
Physician sex 0.11 0.05 2.09 0.037
Seniority –0.02 0.05 –0.45 0.651
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so that if we have an estimated value for  � , we can immediately calculate the 
corresponding probability that a count equal to y is observed in a Poisson dis-
tribution with mean  � . Since  �  is the only adjustable parameter in this Poisson 
model for the variation in observed counts, it is natural to link  �  to the values 
of explanatory variables of interest. Because the mean,  � , of a Poisson distribu-
tion must be greater than zero, it would be unsuitable simply to assume that

k
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a b X ... b X a b X ,�
=
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  where X 1 , …, X k  represent the values of various explanatory variables, such as 
coding for the sex of a physician. Unless we restrict the values of a and the re-
gression coefficients b 1 , ..., b k , the right-hand side of this equation for  �  could 
sometimes be a negative value.

  The logarithmic transformation is a remedy for this dilemma; the sign and 
magnitude of log  �  is completely unrestricted, making the logarithm of the 
Poisson mean a natural choice to equate to the expression, a + �k  

i=1 b i X i , the 
component of the Poisson regression model which is the same as that which 
occurs in other regression models. Thus, if X 1 , …, X k  are potential explanatory 
variables whose values we wish to use to model variability in a response mea-
surement, Y, that is thought to follow a Poisson distribution, then using the 
equation

  log  �  = a + b 1 X 1  + … + b k X k 

  is a natural way of allowing the measured values of these explanatory variables 
to account for the variability in observed values of Y.

  As in other regression models that we have previously considered, if a par-
ticular regression coefficient, say b i , is zero, then the corresponding explana-
tory variable, X i  is not associated with the response, Y. Thus, if there is no evi-
dence to contradict the hypothesis that b i  equals 0, then we probably can omit 
X i  from a Poisson regression model for the observed data. As we discussed in 
§11.2 for the case of logistic regression, a suitable statistic for testing the hy-
pothesis that the regression coefficient, b i , equals zero is

i

i

ˆ| b |T .ˆest. standard error(b )
=

  The results of an analysis may also be presented in terms of the ratio

i

i

b̂ ,ˆest. standard error(b )

  which is equal to T, apart from the sign. The latter is the ratio found in  ta-
ble 12.1 . Whichever version of this test statistic is used, the conclusion regard-
ing the associated explanatory variable, X i , is the same.

  The Model for Poisson Regression 
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  The explanatory variables used in fitting the Poisson regression model sum-
marized in  table 12.1  are all binary ones that encode whether or not a physician 
in the study attended the training course, was a female, and was more senior.

  There is considerable evidence in the study data that the estimated regres-
sion coefficient associated with attending the course is significantly different 
from zero, establishing a behavioural effect that is associated with the training 
provided. There is also some evidence of an effect associated with a physician’s 
sex, but there is no evidence of different behaviour patterns between senior and 
junior physicians. The signs of the estimated regression coefficients for course 
attendance and physician sex each indicate that the estimated Poisson mean is 
larger if the physician is female or if he or she attended the communication 
skills training.

  The results of an analysis based on a Poisson regression model can also be 
described in terms of a rate ratio or ‘relative rate’. If b j  is the regression coeffi-
cient associated with a particular binary explanatory variable, such as course 
attendance, exp(b j ) represents the ratio of the rate at which the events of inter-
est occur among physicians who received the skills training compared to those 
who did not. Thus, the key feature of the analysis that we can distill from t able 
12.1  is that the rate at which physicians asked focussed and/or open questions, 
adjusted for sex and seniority, is exp(0.24) = 1.27 times greater after attending 
the training course. And if we use the estimated standard error for b̂ 1 of 0.05 
to derive the 95% confidence interval 0.24  8  1.96(0.05), i.e., (0.14, 0.34), for b 1 , 
then a corresponding 95% confidence interval for the relative rate is (exp(0.14), 
exp(0.34)) or (1.15, 1.40).

  Of course, the importance of an effect may be linked to its absolute rather 
than relative size. In this communication skills study, the relative rate effect of 
1.26 was associated with a mean number of 6.54 focussed and/or open ques-
tions asked during a patient consultation by a physician in the trained group 
compared with a mean of 5.14 in the control group. Providing such informa-
tion, in addition to the Poisson regression results listed in  table 12.1 , is sensible 
and informative.

  As in the case of logistic regression, the calculations involved in fitting a 
Poisson regression model to observed data are known as maximum likelihood 
estimation, the details of which are beyond the intended scope of this book. 
Even though many software packages that are now available will fit Poisson 
regression models, there are some aspects of these models that may require 
careful attention in any particular analysis. Thus, readers may wish to consult 
a statistician when the use of Poisson regression seems appropriate. However, 
we hope that our brief introduction to this regression model for count data has 
been informative, and will enable readers to understand the use of this statisti-
cal methodology in published papers.




