THÉORIE DE GALOIS

THÉORIE DE GALOIS

Cours et exercices corrigés

Jean-Pierre Escofier
Maître de conférences
à l'université Rennes 1

2e édition

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que représente pour l'avenir de l'écrit,

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage. Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photoco-

pie à usage collectif sans autorisation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd'hui menacée. Nous rappelons donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l'auteur, de son éditeur ou du Centre français d'exploitation du

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

© Dunod, 1997, 2000, 2020 pour la nouvelle présentation 11 rue Paul Bert, 92240 Malakoff

DANGER

www.dunod.com ISBN 978-2-10-082029-0

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

Table des matières

XV

AVANT-PROPOS

CHV	DITRE 1	• DIFFÉRENTS ASPECTS HISTORIQUES DE LA RÉSOLUTION DES ÉQUATIONS	
	ÉBRIQU	•	1
1.1	Calcul	approché des racines d'une équation	1
1.2	Constr	uction de solutions par intersections de courbes	2
1.3	Liens a	vec la trigonométrie	2
1.4	Problè	mes de notation et de terminologie	2
1.5	Problè	me de la localisation des racines	4
1.6	Problè	me de l'existence des racines	4
1.7	Problè	me de la résolution algébrique des équations	5
СНА	PITRE 2	• HISTOIRE DE LA RÉSOLUTION DES ÉQUATIONS DE DEGRÉ 2, 3 OU 4	
AVA	NT 164	0	7
2.1	Équati	ons du second degré	7
	2.1.1	Les Babyloniens	7
	2.1.2	Les Grecs	9
	2.1.3	Les Arabes	9
	2.1.4	Usage des nombres négatifs	10
2.2	Équati	ons du troisième degré	10
	2.2.1	Les Grecs	10
	2.2.2	Omar Khayyam et Sharaf al Din al Tusi	11
	223	Scipio del Ferro Tartaglia Cardan	11

Table des matières

VI

	2.2.4	Résolution algébrique de l'équation du troisième degré	12
	2.2.5	Premiers calculs avec les complexes	13
	2.2.6	Raffaele Bombelli	14
	2.2.7	François Viète	15
2.3	Équati	ons du quatrième degré	15
EXEF	RCICES		17
SOLU	JTIONS		20
СНА	PITRE 3	POLYNÔMES SYMÉTRIQUES	22
3.1	Polynô	mes symétriques	22
	3.1.1	Rappel	22
	3.1.2	Définitions	23
3.2	Polynô	mes symétriques élémentaires	24
	3.2.1	Définition	24
	3.2.2	Produit des $X - X_i$ et relations entre coefficients et racines	24
3.3	Polynô	mes symétriques et polynômes symétriques élémentaires	25
	3.3.1	Théorème	25
	3.3.2	Proposition	28
	3.3.3	Proposition	28
3.4	Formu	les de Newton	28
3.5	Résult	ant de deux polynômes	31
	3.5.1	Définition	31
	3.5.2	Proposition	31
3.6	Discrir	ninant d'un polynôme	33
	3.6.1	Définition	33
	3.6.2	Proposition	33
	3.6.3	Formules	33
	3.6.4	Polynômes à coefficients réels : racines réelles et signe du discriminant	34
EXE	RCICES		35
SOL	JTIONS		39
СНА	PITRE 4	• EXTENSIONS DE CORPS	44
4.1	Extens	ions de corps	44
	4.1.1	Définition	44
	4.1.2	Proposition	45
	4.1.3	Degré d'une extension	45
	414	Tour de corps	45

VII

4.2	Formu	le de multiplicativité des degrés	45
	4.2.1	Proposition	45
4.3	Extens	ion engendrée	47
	4.3.1	Proposition	47
	4.3.2	Définition	47
	4.3.3	Proposition	47
4.4	Éléme	nts algébriques	48
	4.4.1	Définition	48
	4.4.2	Nombres transcendants	48
	4.4.3	Proposition	48
	4.4.4	Polynôme minimal d'un élément algébrique	49
	4.4.5	Propriétés du polynôme minimal	49
	4.4.6	Lien entre l'irréductibilité dans $\mathbb{Z}[X]$ et l'irréductibilité dans $\mathbb{Q}[X]$	50
	4.4.7	Méthodes pour prouver l'irréductibilité d'un polynôme de $\mathbb{Z}[X]$	50
4.5	Extens	ions algébriques	52
	4.5.1	Extension engendrée par un élément algébrique	52
	4.5.2	Propriétés de $K[a]$	52
	4.5.3	Définition	53
	4.5.4	Extensions de degré fini	53
	4.5.5	Corollaire : tour d'extensions algébriques	53
4.6	Extens	ions algébriques par n éléments	53
	4.6.1	Notation	53
	4.6.2	Proposition	54
	4.6.3	Corollaire	54
4.7	Consti	ruction d'une extension par adjonction de racine	54
	4.7.1	Définition	55
	4.7.2	Proposition	55
	4.7.3	Corollaire	55
	4.7.4	Propriété universelle de $\frac{K[X]}{(P)}$	56
EXER	CICES		57
SOLL	ITIONS		61
CHAI	PITRE 5	• CONSTRUCTIONS À LA RÈGLE ET AU COMPAS	69
5.1	Points	constructibles	69
5.2	Exemp	oles de constructions classiques	70
	5.2.1	Projection d'un point sur une droite	70
	5.2.2	Construction d'un repère orthonormé à partir de deux points	70
	5.2.3	Construction de la parallèle à une droite passant par un point	71

Table des matières	VIII
--------------------	------

5.3	Lemme	71
5.4	Coordonnées des points constructibles en une étape	72
5.5	Condition nécessaire de constructibilité	72
5.6	Deux problèmes vieux de plus de deux mille ans	73
	5.6.1 Duplication du cube	73
	5.6.2 Trisection de l'angle	73
5.7	Condition suffisante de constructibilité	74
EXEF	RCICES	76
SOLU	UTIONS	79
СНА	PITRE 6 • K-HOMOMORPHISMES	81
6.1	Nombres conjugués	81
6.2	K-homomorphismes	82
	6.2.1 Définitions	82
	6.2.2 Propriétés	82
6.3	Éléments algébriques et K-homomorphismes	83
	6.3.1 Proposition	83
	6.3.2 Exemple	84
6.4	Extensions de plongements dans ${\mathbb C}$	84
	6.4.1 Définition	84
	6.4.2 Proposition	84
	6.4.3 Proposition	86
6.5	Théorème de l'élément primitif	87
	6.5.1 Théorème et définition	87
	6.5.2 Exemple	88
6.6	Indépendance linéaire des K-homomorphismes	88
	6.6.1 Caractère	88
	6.6.2 Théorème (Emil Artin)	88
	6.6.3 Corollaire : théorème de Dedekind	89
EXE	RCICES	90
SOL	UTIONS	91
CHA	APITRE 7 • EXTENSIONS NORMALES	93
7.1	Corps de décomposition	93
	7.1.1 Définition	93
	7.1.2 Corps de décomposition d'un polynôme du troisième degré	94

Table des matières IX

7.2	Extensions normales	94
7.3	Extensions normales et K-homomorphismes	95
7.4	Corps de décomposition et extensions normales	95
	7.4.1 Proposition	95
	7.4.2 Réciproque	96
7.5	Extensions normales et extensions intermédiaires	96
7.6	Clôture normale	97
	7.6.1 Définition	97
	7.6.2 Proposition	97
	7.6.3 Proposition	97
7.7	Corps de décomposition, cas général	97
EXER	RCICES	99
SOLU	JTIONS	101
СНА	PITRE 8 • GROUPES DE GALOIS	103
8.1	Groupes de Galois	103
	8.1.1 Groupe de Galois d'une extension	103
	8.1.2 Ordre du groupe de Galois d'une extension normale de degré fini	103
	8.1.3 Groupe de Galois d'un polynôme	104
	8.1.4 Groupe de Galois comme sous-groupe d'un groupe de permutations	104
	8.1.5 Petite histoire de la notion de groupe	105
8.2	Corps des invariants	106
	8.2.1 Définition et proposition	106
	8.2.2 Théorème (Emil Artin)	106
8.3	Exemple de $\mathbb{Q}\left[\sqrt[3]{2},j ight]$, première partie	107
8.4	Groupes de Galois et extensions intermédiaires	109
8.5	La correspondance de Galois	110
8.6	Exemple de $\mathbb{Q}\left[\sqrt[3]{2},j ight]$, seconde partie	111
8.7	Exemple de $X^4 + 2$	111
	8.7.1 Groupes diédraux	111
	8.7.2 Cas particulier de D_4	112
	8.7.3 Groupe de Galois de $X^4 + 2$	113
	8.7.4 Correspondance de Galois	114
	8.7.5 Recherche de polynômes minimaux	115
EXE	RCICES	116
SOL	JTIONS	121

Table des matières X

CHAP	ITRE 9	RACINES DE L'UNITÉ	128
9.1	Group	e $U(n)$ des unités de l'anneau $\dfrac{\mathbb{Z}}{n\mathbb{Z}}$	128
	9.1.1	Définition et rappel	128
	9.1.2	Structure de $U(n)$	129
9.2	Fonction	on de Möbius	129
	9.2.1	Fonction multiplicative	129
	9.2.2	Fonction de Möbius	130
	9.2.3	Proposition	130
	9.2.4	Formule d'inversion de Möbius	130
9.3	Racine	s de l'unité	131
	9.3.1	Racines n-ièmes de l'unité	131
	9.3.2	Proposition	131
	9.3.3	Racines primitives	131
	9.3.4	Propriétés des racines primitives	131
9.4	Polynô	mes cyclotomiques	132
	9.4.1	Définition	132
	9.4.2	Propriétés du polynôme cyclotomique	132
9.5	Group	e de Galois sur $\mathbb Q$ d'une extension de $\mathbb Q$ par une racine de l'unité	134
EXER	CICES		136
SOLU	TIONS		141
CHAF	PITRE 10	• EXTENSIONS CYCLIQUES	153
		ions cycliques et abéliennes	153
		ions par une racine et extensions cycliques	153
		ctibilité de $X^p - a$	154
10.4	Théoré	eme 90 de Hilbert	155
	10.4.1	Norme	155
	10.4.2	Théorème 90 de Hilbert	155
10.5	Extens	ions par une racine et extensions cycliques : réciproque	156
10.6	Résolv	antes de Lagrange	156
		Définition	156
	10.6.2	Propriétés	157
10.7	Résolu	tion de l'équation du troisième degré	158
10.8	Résolu	tion de l'équation du quatrième degré	159

Table des matières XI

	Commentaire historique	161
EXER	CICES	162
SOLU	TIONS	164
CHAF	PITRE 11 • GROUPES RÉSOLUBLES	166
11.1	Première définition	166
11.2	Groupe dérivé ou groupe des commutateurs	167
11.3	Seconde définition	167
11.4	Exemples de groupes résolubles	168
11.5	Troisième définition	168
11.6	Simplicité de A_n pour $n \geqslant 5$	169
	11.6.1 Théorème	169
	11.6.2 A_n non résoluble pour $n \ge 5$, preuve directe	170
11.7	Des résultats récents	170
EXER	CICES	171
SOLU	TIONS	174
CHAF	PITRE 12 • RÉSOLUBILITÉ DES ÉQUATIONS PAR RADICAUX	177
12.1	Extensions radicales et polynômes résolubles par radicaux	177
	12.1.1 Extensions radicales	177
	12.1.2 Polynôme résoluble par radicaux	178
	12.1.3 Première construction	178
	12.1.4 Seconde construction	178
12.2	Si un polynôme est résoluble par radicaux, son groupe de Galois est résoluble	179
12.3	Exemple de polynôme non résoluble par radicaux	179
12.4	Réciproque du critère fondamental	180
12.5	Équation générale de degré n	180
	12.5.1 Éléments algébriquement indépendants	180
	12.5.2 Existence d'éléments algébriquement indépendants	180
	12.5.3 Équation générale de degré n	181
	12.5.4 Groupe de Galois d'une équation générale de degré n	181
EXER	CICES	183
SOLU	TIONS	185
CHAF	PITRE 13 • VIE D'ÉVARISTE GALOIS	187

Table des matières XII

CHAP	ITRE 14 • CORPS FINIS	193
14.1	Corps algébriquement clos	193
	14.1.1 Définition	193
	14.1.2 Clôture algébrique	194
	14.1.3 Théorème (Steinitz, 1910)	194
14.2	Exemples de corps finis	195
14.3	Caractéristique d'un corps	195
	14.3.1 Définition	195
	14.3.2 Propriétés	195
14.4	Propriétés d'un corps fini	196
	14.4.1 Proposition	196
	14.4.2 Homomorphisme de Frobenius	197
14.5	Existence et unicité d'un corps fini à p^r éléments	197
	14.5.1 Proposition	197
	14.5.2 Corollaire	198
14.6	Extensions de corps finis	198
14.7	Normalité d'une extension finie de corps fini	199
14.8	Groupe de Galois d'une extension finie de corps fini	199
	14.8.1 Proposition	199
	14.8.2 Correspondance de Galois	200
	14.8.3 Exemple	200
EXER	CICES	201
SOLU	TIONS	208
CHAF	PITRE 15 • EXTENSIONS SÉPARABLES	216
15.1	Séparabilité	216
15.2	Exemple d'élément inséparable	217
15.3	Critère de séparabilité	217
15.4	Corps parfaits	218
15.5	Corps parfaits et extensions séparables	218
15.6	Extensions galoisiennes	218
	15.6.1 Définition	218
	15.6.2 Proposition	218
	15.6.3 Correspondance de Galois	219

Table des matières	XIII
--------------------	------

CHAF	220	
16.1	Le problème inverse de la théorie de Galois	220
	16.1.1 Le problème	220
	16.1.2 Le cas abélien	220
	16.1.3 Exemple	221
16.2	Calculs de groupes de Galois sur Q pour des polynômes de petit degré	221
	16.2.1 Simplifications du problème	221
	16.2.2 Problème de l'irréductibilité	222
	16.2.3 Plongement de G dans S_n	222
	16.2.4 Recherche de G parmi les sous-groupes transitifs de S_n	222
	16.2.5 Sous-groupes transitifs de S_4	223
	16.2.6 Étude de $\Phi(G) \subset A_n$	224
	16.2.7 Étude de $\Phi(G) \subset D_4$	224
	16.2.8 Étude de $\Phi(G) \subset \frac{\mathbb{Z}}{4\mathbb{Z}}$	225
	16.2.9 Algorithme d'étude pour $n = 4$	226
BIBL	229	
INDE	235	

Avant-propos

Ce livre commence par une esquisse de l'histoire ancienne (avant 1600) de l'étude des équations algébriques (chapitres 1 et 2). Après quelques résultats sur les polynômes symétriques (chapitre 3), la théorie de Galois est développée (chapitres 4, 6, 7 et 8) pour les extensions algébriques de degré fini contenues dans le corps $\mathbb C$ des complexes, pour rester dans un cadre connu. Le chapitre 8 présente ce qui est sans doute l'idée la plus profonde de Galois : la correspondance entre extensions et groupes. On lira aussi :

- une digression sur les constructions à la règle et au compas (chapitre 5),
- de belles applications (chapitres 9, 10),
- un critère de résolubilité par radicaux (chapitres 11, 12)

qui donnent à cette partie un aspect d'achèvement. De nombreux résultats peuvent être généralisés sans difficulté à des corps quelconques (au moins en caractéristique 0), ou adaptés aux extensions de degré infini.

La vie exceptionnelle d'Évariste Galois ne pouvait pas ne pas être évoquée (chapitre 13). Pour celle de Niels Abel, si émouvante à la fin, on se reportera à la bibliographie.

Suivent quelques indications sur les corps finis (chapitre 14) et sur les extensions séparables (chapitre 15). Le chapitre 16 présente des sujets de recherches actuelles. D'abord l'étude, dans un cas très simple, du problème inverse de la théorie de Galois : savoir si tous les groupes finis sont groupes de Galois d'extensions finies de Q. Ensuite une méthode de calcul de groupes de Galois développable sur ordinateur.

Des exercices et des problèmes complètent la plupart des chapitres de ce cours. Certains énoncés rassemblent des exercices d'entraînement ou reprennent des textes d'examen; d'autres proposent des résultats intéressants mais qui ne peuvent s'intégrer dans le corps du texte; les solutions sont parfois détaillées, parfois rapides. Les solutions d'exercices abordant des domaines qu'il est impossible de traiter plus à fond ici sont assez souvent omises.

Le tout a été rédigé en pensant aux étudiants qui le liront et à ce dont ils se souviendront quelques années plus tard.

J'ai enfin donné quelques aperçus de l'histoire de la théorie. Je remercie la bibliothèque municipale de Rennes de m'avoir permis de reproduire quelques fragments de ses nombreux trésors.

De grands remerciements également à mes collègues Annette Houdebine-Paugam, qui m'a aidé à de nombreuses reprises, et Bernard Le Stum, ainsi qu'aux éditions Masson et Dunod; ils ont relu les derniers états du texte en suggérant maintes corrections et transformations.

À BCDEF,
Jean-Pierre Escofier

Un \square marque la fin d'une démonstration.

Chapitre 1

Différents aspects historiques de la résolution des équations algébriques

Dans ce chapitre, nous nous proposons de rappeler brièvement que l'étude des équations algébriques comporte de nombreux aspects et de donner un minimum de points de repère historiques pour chacun. Il faut toujours se rappeler que des notions, des techniques qui nous paraissent aller de soi ont souvent été conçues par les mathématiciens des siècles passés après de longs efforts; pour le sentir, il faut s'imaginer avec leurs seules connaissances et méthodes. On trouvera dans la bibliographie les références de quelques textes anciens importants ainsi que des textes récents sur l'histoire de ces sujets (ouvrages de J.-P. Tignol, de H. Edwards, articles de C. Houzel).

1.1 CALCUL APPROCHÉ DES RACINES D'UNE ÉQUATION

Les Babyloniens donnaient déjà, vers 1600 av. J.-C., des valeurs approchées très précises des racines carrées. Par exemple, ils avaient calculé une valeur approchée à 10^{-6} près de $\sqrt{2}$: 1.24.51.10 en notation sexagésimale, c'est-à-dire $1+\frac{24}{60}+\frac{51}{60^2}+\frac{10}{60^3}=1,41421296\dots$; on connaît bien la méthode esquissée par Héron d'Alexandrie (vers 200) pour les obtenir à l'aide de la suite définie par $u_{n+1}=\frac{1}{2}\left(u_n+\frac{a}{u_n}\right)$.

Il n'est pas possible ici de détailler l'histoire des calculs approchés qu'effectuent les mathématiciens chinois (on trouve des calculs de racines cubiques dès 50 av. J.-C.) ou du monde

arabe. Notons cependant que la méthode de linéarisation d'Isaac Newton utilisant la suite $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$ est déjà connue de l'Arabe Sharaf al Din al Tusi, né en 1201.

En 1225, Léonard de Pise donne 1.22.7.42.33.40 (en base 60) pour valeur approchée de la racine positive de l'équation $x^3 + 2x^2 + 10x = 20$, ce qui est une approximation à 10^{-10} , excellente : nous ne savons comment il l'obtint.

1.2 CONSTRUCTION DE SOLUTIONS PAR INTERSECTIONS DE COURBES

Les Grecs pouvaient construire géométriquement toute solution positive d'une équation du second degré à l'aide d'intersections de droites et de cercles mais ils ne formulaient pas ce problème en termes algébriques. Nous y reviendrons au chapitre 5. Pour résoudre les équations du troisième degré, ils utilisaient des coniques, comme Omar Khayyam vers 1100 (voir 2.2.2), ce qu'Archimède (287-212 av. J.-C.) avait peut-être déjà compris.

René Descartes, dans sa *Géométrie*, un des trois traités adjoints à son *Discours de la méthode* (1637), relie la résolution d'équations algébriques aux intersections de courbes algébriques. Ce thème est l'une des sources de la géométrie algébrique.

1.3 LIENS AVEC LA TRIGONOMÉTRIE

La division du cercle en un certain nombre de parties égales, ou cyclotomie (mot venant du grec), a fait l'objet de nombreuses études. Les mathématiciens du monde arabe ont mis en évidence (par exemple, en étudiant la construction du polygone régulier à 9 côtés, qui conduit à une équation du troisième degré) le lien, que François Viète (1540-1603) décrira aussi, entre la trisection d'un angle et la résolution d'une équation du troisième degré (voir Ex. 2.5). Viète donne également des formules exprimant $\sin n\theta$ et $\cos n\theta$ en fonction de $\sin \theta$ et de $\cos \theta$. Laurent Wantzel a montré (1837) que le problème posé par les Grecs, trisecter un angle quelconque à l'aide d'une règle et d'un compas, était impossible (voir 5.6).

Carl Friedrich Gauss, sans doute inspiré par des travaux d'Alexandre Vandermonde de 1770, a montré comment il était possible de résoudre algébriquement la division du cercle en p parties égales si p est un nombre premier de Fermat : p = 17, 257, 65537; il présente ses résultats dans la septième partie des *Disquisitiones arithmeticae* (Recherches arithmétiques) publiées en 1801, préparant la voie à Abel et à Galois.

1.4 PROBLÈMES DE NOTATION ET DE TERMINOLOGIE

Avant le XVI^e siècle, les mathématiciens n'utilisaient pas, sauf exception, de notations et on conçoit la difficulté de la mise en œuvre de méthodes algébriques dans ces conditions. Les usages actuels datent, en gros, de Descartes qui les impose dans sa *Géométrie*.

Donnons une idée des notations de Viète ; dans les Zététiques (1591, de $\zeta \eta \tau \varepsilon \iota \nu$, « chercher » en grec) l'expression :

$$\frac{F.H + F.D}{D + F} = E$$

est écrite :

Pour les puissances de l'inconnue, Viète est encore très lourd ; il écrit A quadratum pour A^2 , A cubus pour A^3 , A quadrato-quadratum pour A^4 , etc., et A potestas, A gradum pour A^m , A^n . Pour indiquer la dimension du paramètre F, il écrit F planum pour F de dimension 2, F solidum pour F de dimension 3, etc.

Par exemple, pour l'équation générale du second degré en A, Viète, qui suppose une homogénéité de dimension entre les variables et les paramètres B, D, Z, écrit :

B in A quadratum plus D plano in A æquari Z solido,

c'est-à-dire $BA^2 + DA = Z$.

Cette condition d'homogénéité ne sera définitivement abandonnée qu'au temps de Descartes (voir 5.7). Le grand apport de Viète est la création du calcul avec des lettres pour les quantités connues ou inconnues (logistice speciosa par opposition à la logistice numerosa); il transforme par là profondément les méthodes et la conception de l'algèbre : au lieu de travailler sur des exemples numériques, on écrit le cas général. L'économie de pensée, les nouvelles possibilités de comprendre une situation vont permettre les progrès ultérieurs. Certains avant lui avaient déjà utilisé des lettres mais sans calculer avec, notant une quantité par une lettre, son carré par une autre, etc.

Rappelons que Viète était connu à son époque comme conseiller de Henri III et qu'il a été conseiller du Parlement de Bretagne à Rennes (où j'écris) de 1573 à 1580.

Donnons quelques dates marquantes de l'histoire des notations algébriques.

Les décimaux sont introduits par Al Uqlidisi, l'*Euclidien* (vers 950), Al Kashi (1427), Viète (1579), Simon Stevin (1585). C'est John Neper qui répand l'usage du point pour séparer les parties entière et fractionnaire (en France, nous utilisons une virgule). Mais on écrira long-temps encore l'entier avec, à sa suite, la fraction donnant la partie fractionnaire : $11 \frac{224\ 176}{1\ 000\ 000}$.

Les signes + et — existent vers 1480 (+ serait une déformation de &) mais leur usage ne se généralise qu'au début du $XVII^e$ siècle ; la multiplication est notée M par Michael Stifel (1545), *in* par Viète (1591) ; nos usages datent de William Oughtred (1637) pour \times , de Wilhelm Leibniz (1698) pour le point.

Pour les puissances de l'inconnue, $1225+148 x^2$ est écrit $1225\widetilde{p}148^2$ par Nicolas Chuquet (1484), $3x^2$ est écrit 3^2 par Rafaelle Bombelli (1572), tandis que Stevin écrit 3^3+5^2-4 D pour $3x^3+5x^2-4x$. L'écriture exponentielle x^2, x^3 , etc., s'impose avec Descartes dont les formules sont écrites dans une forme très proche de la nôtre. Au XVIII^e siècle, on écrit bb pour b^2 mais b^3 , b^4 , etc.

C'est seulement quand le calcul littéral et la notation exponentielle ont été bien mis au point qu'il a été possible de penser clairement le calcul sur les polynômes (c'est Descartes qui

montre qu'un polynôme s'annule en a si et seulement s'il est divisible par X-a). L'histoire de la façon de parler de l'inconnue, de la noter est très complexe et ne sera pas décrite ici. Le signe =, qui apparaît chez Michel Recorde (1557), prend le pas sur le signe de Descartes (un alpha renversé : ∞) à la fin du XVII^e siècle, grâce à Leibniz. Albert Girard (1595-1632) introduit la notation $\sqrt[3]{}$ qu'il substitue à $\left(\frac{1}{3}\right)$, les abréviations pour sinus et tangente et emploie les signes <, > comme Harriot. Les indices sont introduits par Gabriel Cramer (1750) pour écrire ses célèbres formules (les ', ", "" suivis par $^{i\nu}$, $^{\nu}$, etc. deviennent usuels à la même époque), les indices d'indices sont introduits par Galois. Le signe \sum est introduit par Leonhard Euler (1707-1783). L'usage de ces dernières notations ne s'est généralisé qu'au cours du xx^e siècle.

1.5 PROBLÈME DE LA LOCALISATION DES RACINES

Le problème est posé pour des polynômes à coefficients réels. Les résultats de Descartes basés sur le nombre de changements de signe dans la suite des coefficients (voir Ex. 3.7), sont perfectionnés au XIX^esiècle par Jean-Baptiste Fourier et François Budan puis par Charles Sturm qui donne, en 1830, un algorithme permettant de déterminer le nombre de racines réelles dans un intervalle donné.

1.6 PROBLÈME DE L'EXISTENCE DES RACINES

Al Khwarizmi (vers 830) semble être le premier à signaler les équations du second degré qui admettent deux racines strictement positives (voir cependant 2.1.1). Les racines négatives ne seront prises en considération qu'à la fin du XVI^e siècle (voir 2.1.4).

Girard est le premier à affirmer qu'une équation de degré (de *dénomination* dit-il) n a n racines (Fig. 1.1). Il ne donne aucune démonstration et ses idées sont floues sur la nature des solutions, qui peuvent être des nombres complexes ou autres nombres semblables. Ce flou ne l'empêche pas d'innover en calculant avec les racines comme si c'étaient des nombres (voir 3.4). Tout mathématicien appréciera cette merveilleuse formulation:

« pour la certitude de la reigle generale ».

Descartes sera moins précis sur le nombre de racines, le bornant par le degré de l'équation : « Autant que la quantité inconnue a de dimensions, autant peut-il y avoir de diverses racines. » La nature des racines échappe encore à Leibniz qui ne voit pas que $\sqrt{\sqrt{-1}}$ est un nombre complexe (1702). Mais les méthodes d'intégration des fractions rationnelles, que Leibniz et Jean Bernoulli mettent au point à cette époque, conduisent Euler au problème de montrer qu'une équation algébrique P(x) = 0, où P est un polynôme de degré P(x) = 00 complexes (1749 : Recherches sur les racines imaginaires des équations).

Ce théorème est appelé, en France seulement, théorème de d'Alembert, celui-ci en ayant proposé une démonstration intéressante, mais incomplète, en 1746. Pierre Simon de Laplace, dans ses cours à l'École normale de l'an III, en donne une démonstration élégante en admettant l'existence de racines quelque part. Gauss le prouve de façon satisfaisante à quatre