TABLE DES MATIÈRES

• • •	crace i	a la quatrieme cuition	Al
Int	troduc	tion générale	XV
Αv	Avant-propos des traducteurs		XIX
		Partie A	
		MÉTAUX	
Ch	apitre	1. Métaux	3
	1.1	Introduction	3
	1.2	Les métaux pour une maquette de tracteur à vapeur	3
	1.3	Métaux pour les boîtes de boisson	9
	1.4	Métaux pour les prothèses de hanches	11
	1.5	Données pour les métaux	12
	Exer	cices d'application	14
Ch	apitre	2. La structure des métaux	15
	2.1	Introduction	15
	2.2	Structures cristallines et structures amorphes	16
	2.3	Structure des solutions et des composés	18
	2.4	Phases	20
	2.5	Joints de grains et joints de phases	20
	2.6	Forme des grains et des phases	23
	2.7	Résumé : constitution et structure	25
	Exer	cices d'application	27
Cŀ	apitre	3. Diagrammes de phases 1	31
	3.1	Introduction	31
	3.2	Ouvrages de référence	.31
	3.3	Définitions	32

Solution des exercices Viateriel protégé par le droit d'auteur

40

52

3.4 Les systèmes à un et deux constituants

Chanitre	4. Diagrammes de phases 2	58
4.1	Eutectiques, eutectoïdes et peritectiques	58
	cices d'application	71
	tion des exercices	76
301u	tion des exercices	70
Chapitre	5. Étude de cas de diagrammes de phases	82
5.1	Introduction	82
5.2	Le choix des alliages de brasure tendre	82
5.3	Silicium pur pour circuits intégrés	86
5.4	Fabrication de la glace sans bulles	91
Exer	cices d'application	97
Chapitre	6. Force motrice pour les changements structuraux	100
6.1	Introduction	100
6.2	Forces motrices	101
6.3	Réversibilité	104
6.4	Stabilité, instabilité, métastabilité	105
6.5	Force motrice pour la solidification	106
6.6	Changements de phase à l'état solide	108
6.7	Coalescence de précipités	109
6.8	Croissance de grains	110
6.9	Recristallisation	110
6.10	Ordres de grandeur des forces motrices	111
	cices d'application	112
Chanitra	7. Cinétique des changements structuraux I :	
	mations diffusives	115
7.1	Introduction	115
7.2	Solidification	116
7.3	Effets de flux de chaleur	121
7.4	Changements de phases à l'état solide	122
7.5	Cinétiques contrôlées par la diffusion	122
7.6	Forme des grains et des phases	123
Exer	cices d'application	127
Chapitre	8. Cinétiques des changements structuraux II : Germination	129
8.1	Introduction	129
8.2	Germination dans les liquides	129
8.3	Germination hétérogène	132
8.4	Germination dans les solides	135
8.5	Résumé	136
IVI.	ateriel protégé par le droit d'auteur	

	8.6	De la germination partout	136
	5 Exer	cices d'application	138
	Chanitre	9. Cinétique des changements structuraux III :	
		mations displacives	142
	9.1.	Introduction	142
	9.2	La transformation diffusive C.F.C. \rightarrow C.C. du fer pur	143
	9.3	Le diagramme temps-température-transformation (TTT)	147
	9.4	La transformation displacive C.F.C. \rightarrow C.C.	147
	9.5	Détail de la formation de la martensite	150
	9.6	Transformation martensitique dans les aciers	152
	Exer	cices d'application	155
	Chapitre	10. Étude de cas : transformations de phases	157
	10.1	Introduction	157
	10.2	La pluie artificielle	157
		Coulées à grain fin	160
	10.4	Monocristaux pour semi-conducteurs	164
	10.5	Métaux amorphes	166
	Exer	cices d'application	172
	Chapitre	11. Alliages légers	174
	11.1	Introduction	174
	11.2	Durcissement de solution solide	176
	11.3	Durcissement de précipitation (durcissement structural)	178
		Durcissement d'écrouissage	184
		cices d'application	187
		12. Aciers I : Aciers au carbone	189
	12.1	Introduction	189
		Microstructures produites par refroidissement lent (normalisation)	190
ï		Propriétés mécaniques des aciers normalisés	195
5		Aciers trempés et revenus	196
200		Remarques sur le diagramme TTT	199
inom		cices d'application	201
nonan		13. Aciers II : Aciers alliés	205
Toure reproduction	13.1	Introduction	205
Oute	13.2	Trempabilité Description and the selection and the	205
1	13.3	Durcissement de solution solide	209
incr.		Durcissement de précipitation	209
)	13\5	laterie । ବ୍ୟୁକ୍ତି par le droit d'auteur	210

13.6 Aciers inoxydables	210
13.7 Les phases des aciers inoxydables	212
13.8 Optimiser les aciers inoxydables	213
Exercices d'application	217
Chapitre 14. Études de cas : les aciers	220
14.1 Travail de détective métallurgiste après l'explosion d'une chaudière	220
14.2 Comment souder des aciers en toute sécurité	224
14.3 Le cas du marteau cassé	227
Exercices d'application	229
Chapitre 15. Mise en œuvre des métaux 1	235
15.1 Introduction	235
15.2 Fonderie et moulage	236
15.3 Procédés de corroyage	245
15.4 Restauration et recristallisation	251
Exercices d'application	255
Chapitre 16. Mise en œuvre des métaux 2	257
16.1 Usinage	257
16.2 Assemblage	258
16.3 Les traitements thermiques	260
16.4 Points particuliers	262
Exercices d'application	269
PARTIE B	
CÉRAMIQUES	
Chapitre 17. Céramiques	277
17.1 Introduction	277
17.2 Les céramiques et verres typiques	282
17.3 Les composites à base de céramiques	285
17.4 Données concernant les céramiques	285
Exercices d'application	286
Chapitre 18. Structure des céramiques	291
18.1 Introduction	291
18.2 Céramiques ioniques et céramiques covalentes	292
18.3 Les céramiques ioniques simples	292
18.4 Les céramiques covalentes simples	294
18.5 La silice et les silicates	295
Nateriel protégé par le droit d'auteur	297

18.7	Les alliages de céramiques	298
18.8	La microstructure des céramiques	299
18.9	Les céramiques vitrifiées, ou terres cuites	300
18.10	Pierres et roches	301
18.11	Les composites à base de céramiques	301
Exen	iple détaillé	301
Exer	cices d'application	302
Chapitre	19. Les propriétés mécaniques des céramiques	304
19.1	Introduction	304
19.2	Les modules d'élasticité	305
19.3	Résistance mécanique, dureté et résistance du réseau cristallin	305
19.4	Résistance à la rupture des céramiques	308
19.5	Module de rupture	309
19.6	Essai de compression	311
19.7	Résistance aux chocs thermiques	312
19.8	Variation au cours du temps de la résistance mécanique des céramiques	312
19.9	Fluage des céramiques	314
Exer	cices d'application	316
Chapitre	20. Production, mise en forme et assemblage des céramiques	322
20.1	Introduction	322
20.2	Production des céramiques techniques	323
20.3	Mise en forme des céramiques techniques	323
20.4	Production et mise en forme du verre	328
20.5	Production et mise en forme des terres cuites	329
20.6	Amélioration des performances des céramiques	330
20.7	Assemblage des céramiques	333
Exen	nple détaillé	335
Exer	cices d'application	336
Chapitre	21. Ciments et bétons	339
21.1	Introduction	339
21.2	La chimie des ciments	339
21.3	Structure du ciment Portland	344
21.4	Le béton	346
21.5	Résistance mécanique des ciments et bétons	348
21.6	Les ciments à haute résistance	350
21.7	Renforcement du ciment et du béton	351
Exen	Ple détaillé l'ateriel protégé par le droit d'auteu	353 J

Exercices d'application	355
Chapitre 22. Études de cas : céramiques	357
22.1 Dur comme du silex	357
22.2 L'ardoise, un matériau de couverture naturel	359
22.3 Des poutres de charpente en verre	362
Exemple détaillé	366
Exercices d'application	367
PARTIE C	
Polymères	
Chapitre 23. Les polymères	371
23.1 Introduction	371
23.2 Les polymères types	373
23.3 Données sur les propriétés des polymères	377
Exemple détaillé	380
Exercices d'application	381
Chapitre 24. La structure des polymères	383
24.1 Introduction	383
24.2 La longueur moléculaire et le degré de polymérisation	384
24.3 L'architecture moléculaire	386
24.4 L'arrangement des macromolécules et la transition vitreuse	389
Exemple détaillé	393
Exercices d'application	396
Chapitre 25. Le comportement mécanique des polymères	398
25.1 Introduction	398
25.2 La rigidité	399
25.3 La résistance à la déformation : l'étirage à froid et les craquelures	409
Exercices d'application	414
Chapitre 26. Production, mise en forme et assemblage des polymères	420
26.1 Introduction	420
26.2 La synthèse des polymères	421
26.3 Les alliages de polymères	422
26.4 La mise en forme des polymères	424
26.5 L'assemblage des polymères	428
Exemple détaillé	428
Materiel protégé par le droit d'auteur	430

	43.5
Chapitre 27. Études de cas : polymères	435
27.1 Un accident mortel de saut à l'élastique	435
27.2 Les canalisations de gaz en polyéthylène	441
27.3 Fibres ultra-résistantes pour les gréements de voiliers	447
Exercices d'application	449
Partie D	
Composites	
Chapitre 28. Propriétés des composites et des mousses	453
28.1 Introduction	453
28.2 Les composites fibreux	454
28.3 Module d'élasticité	456
28.4 Résistance à la traction	457
28.5 Ténacité	460
28.6 Les mousses et solides cellulaires	461
28.7 Les propriétés des mousses	462
28.8 Des matériaux conçus « à la carte »	465
Exercices d'application	465
Chapitre 29. Structure et propriétés du bois	468
29.1 Introduction	468
29.2 La structure du bois	469
29.3 Les propriétés mécaniques du bois	472
29.4 Élasticité	473
29.5 Résistance à la traction et à la compression	475
29.6 Ténacité	476
29.7 Le bois comparé aux autres matériaux	478
Exemple détaillé	478
Exercices d'application	483
Chapitre 30. Études de cas : composites	485
30.1 Des matériaux pour la table d'un violon	485
30.2 Rupture d'un instrument chirurgical en PRFV	492
30.3 Le liège : une mousse naturelle unique en son genre	494
Exemple détaillé	501
Exercices d'application	502
Bibliographie	521
Bibliographie en français	523
Index et lexique français-anglais	525
Matériel protégé par le droit d'auteu	r