Opérations sur les ensembles

Résumé de cours

Un ensemble est une collection d'éléments. L'ensemble E des valeurs a, b et c est noté $E = \{a, b, c\}$. Chaque élément n'est présent qu'une fois dans l'ensemble et dans un ordre quelconque.

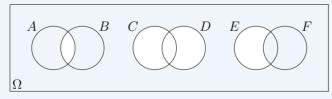
- L'ensemble qui ne contient aucun élément est appelé ensemble vide et noté \varnothing .
- Lorsqu'un élément a appartient à un ensemble E, on note $a \in E$. On dit que E contient a. Le notation $a \notin E$ signifie que a n'est pas dans E.
- Si E contient un nombre fini d'éléments, E est dit **fini**. Dans ce cas, le nombre d'éléments de E est le cardinal de E et noté Card(E).
 - · Si E contient un nombre infini d'éléments, il est dit **infini**.
- L'intersection de deux ensembles E et F est l'ensemble qui contient les éléments présents à la fois dans E et dans F. L'intersection se note $E \cap F$.
- L'union de deux ensembles E et F est l'ensemble qui contient les éléments de E et les éléments de F. L'union se note $E \cup F$.
- On dit que l'ensemble E est **inclus** dans l'ensemble F si tous les éléments de E sont également dans F. On dit également que E est une **partie** ou **sous-ensemble** de F et on note $E \subset F$.

La notation $E \not\subset F$ signifie que E n'est pas inclus dans l'ensemble F.

Le **complémentaire** d'un ensemble E dans un ensemble F est l'ensemble qui contient les éléments de F qui ne sont pas dans E, on note $\mathcal{C}_F E$, $F \setminus E$ ou parfois E^c ou \bar{E} s'il n'y a pas d'ambiguïté.

Si A et B sont deux ensembles, alors $(A \cup B)^c = A^c \cap B^c$ et $(A \cap B)^c = A^c \cup B^c$.

Une manière de représenter des ensembles quelconques est d'utiliser des diagrammes de Venn parfois appelés « patatoïdes ».



Le rectangle représente l'ensemble Ω . Les sous-ensembles A, B, C, D, E et F sont inclus dans Ω . En blanc sont représentés l'intersection $A \cap B$, l'union $C \cup D$ et la partie $E \setminus F$.

Le **produit cartésien** de deux ensembles E et F, noté $E \times F$ et prononcé « E croix F », est l'ensemble des **couples** notés (a,b) avec $a \in E$ et $b \in F$.

L'ensemble $E \times E$ est noté E^2 .

On note $E \times F \times G = \{(a,b,c) \ , \ a \in E, b \in F \ {\rm et} \ c \in G\}$ l'ensemble des **triplets.**

- · De manière générale, E^k est l'ensemble des (x_1, x_2, \dots, x_k) avec $x_1, x_2, \dots, x_k \in E$ et appelés k-uplets.
- · Le k-uplet (x_1, x_2, \ldots, x_k) est donc une liste ordonnée de k éléments qui ne sont pas nécessairement distincts.

Soient a, b, c, d, x et y des éléments distincts et A, B, C, E, F et G des ensembles.

Exemples

Donnons ici quelques manipulations et calculs sur les ensembles.

- $a \in \{a, b, c\}$ et $d \notin \{a, b, c\}$
- $\{a, b, c, a\} = \{c, b, a\}$
- $\{a, b, c\}$ est fini et Card $(\{a, b, c\}) = 3$
- $\{a, b, c\} \cap \{b, c, d\} = \{b, c\}$

- $\{a, b, c\} \cup \{b, c, d\} = \{a, b, c, d\}$
- $\{a, b, c\} \setminus \{a, b, d\} = \{c\}$
- $\{a,b\} \times \{c,d\} = \{(a,c),(a,d),(b,c),(b,d)\}$

— Exercice 1 –

Décrire les ensembles suivants.

- 1) $\{a\} \cup \{b\}$
- 4) $\{a,b\} \cap \{a,b\}$
- 2) $\{a,b\} \cap \{b,c\}$
- 5) $\{a, b\} \cup \{b, c\}$
- 3) $\{a\} \cap \{a, b, c\}$
- 6) $\{a,b\} \cup \{a,b\}$

- Exercice 2 -

Calculer les cardinaux suivants.

- 1) Card $(\{a\} \cup \{b,c\})$
- 2) Card $(\{a, c\} \cap \{b, d\})$
- 3) Card $(\{a\} \times \{b,c\})$

- Exercice 3 -

Décrire les ensembles suivants.

- 1) $(\{a,b\} \cap \{a,c\}) \cup \{b,c,d\}$
- 2) $(\{a,b\} \cup \{a,c\}) \cap \{b,c,d\}$
- 3) $\{a, b, d\} \setminus \{b, c\}$
- 4) $(\{b,c\} \cup \{a,d\}) \setminus \{a,c\}$
- 5) $\{b, c\} \cup (\{a, d\} \setminus \{a, c\})$
- 6) $(\{a,b,c\}\setminus\{a,d\})\setminus\{a,c\}$
- 7) $\{a, b, c\} \setminus (\{a, d\} \setminus \{a, c\})$

Exercice 4

Décrire les ensembles suivants.

- 1) $A \times B$ avec $A = \{a, b\}$ et $B = \{a, b, c\}$
- 2) $E \times F \times G$ avec $E = F = G = \{x, y\}$
- 3) $E \times (F \cup G)$ et $(E \times F) \cup (E \times G)$ avec $E = \{x, y\}, F = \{a, b\}$ et $G = \{c, d\}$

- VRAI ou FAUX -

Pour tous ensembles A, B et C, indiquer si les assertions suivantes sont vraies ou fausses.

- 1) $A \cup B \subset A$.
- 2) $A \cap B \subset A \cup B$.
- 3) $A \setminus B \subset A$.
- 4) $A \setminus B \subset B$.
- 5) $(A \cap B) \cup (A \setminus B) = A$.

- 6) $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.
- 7) $A \cup (B \cap C) = (A \cap B) \cup (A \cap C)$.
- 8) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 9) $A \subset A \times B$.
- $10) \ A \times B = B \times A.$

Ensembles de nombres

Bien connaître avant: 1. Opérations sur les ensembles.

Résumé de cours

L'ensemble des nombres **entiers naturels** est noté :

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$
 et $\mathbb{N}^* = \{1, 2, 3, 4, \ldots\}$.

Les nombres **pairs** sont les entiers 2n avec $n \in \mathbb{N}$, les **impairs** sont les nombres 2n + 1 avec $n \in \mathbb{N}$.

Un ensemble E est dit **dénombrable** si on peut compter ses éléments. Autrement dit chaque élément de E est associé de manière unique à un élément de \mathbb{N} .

L'ensemble des nombres entiers relatifs est infiniment dénombrable et se note

$$\mathbb{Z} = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}.$$

- Les nombres **décimaux** s'écrivent avec un nombre fini de décimales. L'ensemble des nombres décimaux est infini dénombrable et se note D.
- Les nombres **rationnels** sont les fractions d'un nombre entier par un entier non nul. Cet ensemble est infini dénombrable et se note $\mathbb{Q} = \left\{ \frac{p}{q} \text{ avec } p \in \mathbb{Z} \text{ et } q \in \mathbb{N}^* \right\}$.
- Les réels, ou nombres **réels**, sont tous les nombres avec un nombre quelconque de décimales. L'ensemble des nombres réels est infini non dénombrable et se note \mathbb{R} . Intuitivement, ce sont toutes les valeurs numériques.
 - · Un intervalle est un sous-ensemble de \mathbb{R} contenant tous les réels entre deux valeurs données.
 - L'intervalle [a, b] est l'ensemble de tous les réels compris entre a et b, a et b inclus. On dit que l'intervalle est **fermé**.
 - · L'intervalle]a, b[est l'ensemble de tous les réels compris entre a et b, a et b exclus. On dit que l'intervalle est **ouvert**.
 - Les intervalles]a,b] et [a,b[sont dits **semi-ouverts**.
 - · L'ensemble $\{a\}$ est un intervalle particulier ne contenant que l'élément a. Il est appelé singleton.

Le **bord d'un ensemble** E de réels est l'ensemble des réels x tels que pour tout intervalle ouvert I contenant x, I contient au moins une valeur de E et au moins une valeur pas dans E. Intuitivement, ce sont les **réels** aux extrémités de E, pas forcément dans E.

Les nombres **complexes** sont les nombres s'écrivant a+ib où $a \in \mathbb{R}$, $b \in \mathbb{R}$ et i vérifie la propriété $i^2 = -1$. L'ensemble des nombres complexes est noté :

$$\mathbb{C} = \{a + ib, \text{ avec } a \in \mathbb{R} \text{ et } b \in \mathbb{R}\}.$$

Les ensembles présentés précédemment sont infinis et inclus les uns dans les autres

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

Exemples et exercices

Exemples

Donnons ici des exemples de valeurs de chacun des ensembles de nombres décrits dans la partie cours.

Exercice 1 -

1) Parmi les valeurs suivantes, lesquelles sont des entiers naturels?

$$0 \; ; \; \frac{1}{2} \; ; \; \frac{-3}{2} \; ; \; \frac{4}{2} \; ; \; i^2 \; ; \; -i^2$$

2) Parmi les valeurs suivantes, lesquelles sont des entiers relatifs?

$$0 \; ; \; 2,1 \; ; \; \frac{2}{5} \; ; \; \frac{-6}{3} \; ; \; -15,5 \; ; \; \frac{-1}{0,5}$$

3) Parmi les valeurs suivantes, lesquelles sont des décimaux?

$$0 \; ; \; -0,0001 \; ; \; 3,14 \; ; \; \frac{1}{2} \; ; \; \frac{1}{7} \; ; \; \frac{1}{0.4}$$

4) Parmi les valeurs suivantes, lesquelles sont des rationnels?

$$0 \; ; \; 0,6666 \; ; \; \frac{1}{6} \; ; \; \frac{-10}{20} \; ; \; \pi \; ; \; \frac{12.5}{13.6}$$

5) Parmi les valeurs suivantes, lesquelles sont des réels?

$$0 \;\; ; \;\; \frac{1+\sqrt{5}}{2} \;\; ; \;\; \frac{\pi}{25} \;\; ; \;\; \frac{-1}{0.12345} \;\; ; \;\; i^2 \;\; ; \;\; i^3$$

- Exercice 2

On considère n et m deux entiers naturels tels que $2 \le n < m$. Les valeurs suivantes sont-elles des entiers naturels ou relatifs? rationnelles? réelles? complexes?

1)
$$n \times m$$

$$6) \ \frac{1}{n}$$

2)
$$n + m$$

7)
$$\frac{-1}{n+n}$$

$$3) -n - m$$

8)
$$n \times \pi$$

4)
$$n - m$$

9)
$$n + im$$

5)
$$\frac{n}{m}$$

10)
$$n \times i^2$$

Exercice 3 -

Écrire sous forme d'intervalles les ensembles de valeurs suivants. Quels en sont les bords?

1) Les
$$x \in \mathbb{R}$$
 tels que $1 \le x \le 2$

2) Les
$$x \in \mathbb{R}$$
 tels que $x < 1, 2$ et $x > -1, 2$

3) Les
$$x \in \mathbb{R}$$
 tels que $x > -3$ et $x \le 0$

4) Les
$$x \in \mathbb{R}$$
 tels que $-1 \le x \le 2$ et $x > 0$

5) Les
$$x \in \mathbb{R}$$
 tels que $\frac{-2}{3} \le x \le 10, 2$ et $\frac{-1}{3} < x < 20, 4$

6) Les
$$x \in \mathbb{R}$$
 tels que $x \le 5$ et $x \ge 5$

7) Les
$$x \in \mathbb{N}$$
 tels que $1 \le x < 100$

Notations, logique et raisonnements

Bien connaître avant : 2. Ensembles de nombres.

Résumé de cours

 \longrightarrow Si E est un ensemble, la notation $\forall x \in E$ signifie

« pour tout élément x de l'ensemble E ».

 \blacksquare Si E est un ensemble, la notation $\exists x \in E$ signifie

« il existe (au moins) un élément x de l'ensemble E ».

 \blacksquare Si E est un ensemble, la notation $\exists!x \in E$ signifie

« il existe un unique élément x de l'ensemble E ».

- Une assertion est un fait mathématique qui est soit vrai, soit faux.
- \longrightarrow Si P et Q sont deux assertions, la notation $P \Rightarrow Q$ (P **implique** Q) signifie que

si l'assertion P est vraie alors l'assertion Q est vraie.

 \rightarrow Si P et Q sont deux assertions, la notation $P \Leftarrow Q$ (Q implique P) signifie que

si l'assertion Q est vraie alors l'assertion P est vraie.

ightharpoonupSi P et Q sont deux assertions, la notation $P \Leftrightarrow Q$ (P si et seulement si Q) signifie que P implique Q et que Q implique P.

On dit également que P et Q sont **équivalentes.**

- \longrightarrow Si P est une assertion, la **négation** de P se note « non P » ou « $\neg P$ ».
 - · La négation de « P est vraie et Q est vraie » est « P est fausse ou Q est fausse ».
 - · La négation de « P est vraie ou Q est vraie » est « P est fausse et Q est fausse ».
- \blacksquare La **réciproque** de l'implication « $P \Rightarrow Q$ » est « $P \Leftarrow Q$ ».
- La contraposée de l'implication « $P \Rightarrow Q$ » est « non $P \Leftarrow$ non Q ». Une implication et sa contraposée sont équivalentes.
- Raisonnement par l'absurde

On considère vraie l'assertion P. On suppose que la assertion « non Q » est vraie, c'est-à-dire que l'assertion Q est fausse.

Si on obtient une contradiction ou une assertion impossible ou absurde, alors ce que l'on a supposé est faux. C'est-à-dire Q est vraie. Finalement $P \Rightarrow Q$.

Par exemple: On souhaite montrer que si x=2 alors $x\geq 0$.

Soit x=2.

On suppose que x < 0.

Alors 2 < 0 ce qui est absurde.

Ainsi x < 0 est absurde. La supposition est donc fausse

et donc $x = 2 \implies x \ge 0$.

Exemples

- $\forall x \in \mathbb{R}_+, x \geq 0.$
- $\exists x \in \mathbb{R} \text{ tel que } x \geq 0.$
- $\exists ! x \in \mathbb{R} \text{ tel que } x = 0.$
- \rightarrow La négation de $x \ge 0$ est x < 0
- La contraposée de $x = 0 \Rightarrow x > 0$ est $x < 0 \Rightarrow x \neq 0$.
- \longrightarrow Si P est une assertion dépendant de x, $non(\forall x \in \mathbb{R}, P \text{ est vraie}) \Leftrightarrow \exists x \in \mathbb{R}, P \text{ est fausse.}$
- \rightarrow Si P est une assertion dépendant de x, $\operatorname{non}(\exists x \in \mathbb{R}, P \text{ est vraie}) \Leftrightarrow \forall x \in \mathbb{R}, P \text{ est fausse.}$

— Exercice 1 –

Compléter les ... par le signe adéquat.

- 1) $x \le 2 \dots x = 0$
- 2) $x \neq 0 \dots x < 0$
- $3) \ x = y \dots 2x = 2y$
- 4) $x = y \dots x \ge y$
- 5) $x < y \dots y \ge x$
- $6) \dots x > 0, x \in \mathbb{R}.$
- 7) ... $x \le 0, x = 0$.

. _ . . . _

- $x \le 0 \Leftarrow x \le -1$
- $x=2 \Leftrightarrow -x=-2$.

- Exercice 2 -

Donner la négation des assertions suivantes. Soient E et F deux ensembles.

- 1) x = y.
- 2) x = 1 et y = 2.
- 3) $x \le -1$ ou $x \ge 1$.
- 4) $\forall x \in F$, $x \notin E$.
- 5) $\exists x \in E \text{ tel que } x \notin F$.
- 6) $\forall x \in E$, $\exists y \in F$ tel que $x = y^2$.

- Exercice 3 -

Écrire la contraposée des assertions suivantes. Soient E et F deux ensembles.

- 1) $x \in E \Rightarrow x \in F$.
- 2) $x \in E \Rightarrow x \notin F$.

- 3) $x = y \Leftrightarrow x y = 0$.
- 4) $E \subset F \Leftrightarrow F \cap E = E$.

- Exercice 4 -

Écrire un raisonnement par l'absurde pour démontrer les assertions suivantes.

- 1) Pour $x = 0, \nexists y \in \mathbb{R}$ tel que xy = 1.
- 2) $\frac{1}{3}$ n'est pas un nombre décimal.
- 3) Vous souhaitez ranger dix chaussettes dans neuf tiroirs, alors il y aura au moins un tiroir qui aura au moins deux chaussettes. (Ce résultat s'appelle le **principe des tiroirs**)

- Exercice 5 -

Démontrer les assertions suivantes en démontrant leur contraposée.

- 1) Si $n \times n$ est un entier pair alors n est un entier pair.
- 2) Si $n \times n$ est un entier impair alors n est un entier impair.
- 3) Soit un réel $a\geq 0$ tel que pour tout $\varepsilon\in\mathbb{R}$, $a<\varepsilon,$ alors a=0.

FICHE 4

Dénombrement

Bien connaître avant : 1. Opérations sur les ensembles et 2. Ensembles de nombres.

Résumé de cours

Pour un entier naturel $n \in \mathbb{N}$, on appelle « factorielle n » ou « n factorielle » la valeur entière

$$n! = n \times (n-1) \times (n-2) \cdots \times 2 \times 1$$
 et par convention $0! = 1$

- \longrightarrow Soient deux ensembles finis E et F et deux sous-ensembles A et B de l'ensemble E. On obtient les formules de dénombrement suivantes.
 - $Card(\emptyset) = 0$ $Card(A^c) = Card(E) Card(A)$
 - $Card(A \cup B) = Card(A) + Card(B) Card(A \cap B)$
 - $Card(E \times F) = Card(E) \times Card(F)$
 - Le nombre de sous-ensembles de E est $Card(\mathcal{P}(E)) = 2^{Card(E)}$.
- Le nombre de k-uplets d'éléments de E est : $(Card(E))^k$. C'est le nombre de manières de choisir k éléments par des **tirages successifs avec remise** dans un ensemble contenant n éléments.
- Le nombre de k-uplets d'éléments deux à deux distincts de E est le nombre d'**arrangements** $A_n^k = n(n-1)(n-2)\dots(n-k+1) = \frac{n!}{(n-k)!}$, pour $k \le n$.

C'est le nombre de manières de choisir k éléments par des **tirages successifs sans remise** dans un ensemble contenant n éléments.

- Lorsque k = n, $A_n^n = n!$ est le nombre de manières de **permuter** n éléments.
- Le nombre de sous-ensembles à k éléments d'un ensemble à n éléments est donné par le coefficient binomial ou la combinaison.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{k!} = \frac{A_n^k}{k!}$$
, pour $k \le n$.

C'est le nombre de manières de choisir k éléments par un **tirage simultané** (sans ordre entre les éléments) dans un ensemble contenant n éléments.

Le triangle de Pascal permet d'obtenir les premières valeurs des combinaisons.

Chaque terme est la somme des deux termes au-dessus : $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

Exemples et exercices

Exemples

- $2! = 2 \times 1 = 2$, $3! = 3 \times 2 \times 1 = 6$, $4! = 4 \times 3! = 4 \times 3 \times 2 \times 1 = 24$.
- Pour $E = \{1, 2, 3\}$ et $F = \{2, 3, 4\}$ alors $E \cup F = \{1, 2, 3, 4\}$ et $E \cap F = \{2, 3\}$. $Card(E \cup F) = 3 + 3 - 2 = 4$, $Card(E \times F) = 3 \times 3 = 9$ et $Card(\mathcal{P}(E)) = 2^3 = 8$
- Une urne contient 4 boules différentes. Le nombre de manières de piocher 2 boules l'une après l'autre en les remettant dans l'urne est : $4^2 = 16$.
- Une urne contient 4 boules différentes. Le nombre de manières de piocher 2 boules l'une après l'autre sans les remettre dans l'urne est : $A_4^2 = \frac{4!}{(4-2)!} = 12$.
- Une urne contient 4 boules différentes. Le nombre de manières de piocher 2 boules en une seule fois est : $\binom{4}{2} = \frac{4!}{2!(4-2)!} = 6$.

- Exercice 1 -

Calculer les valeurs suivantes.

1)
$$5!$$

2) $\frac{6!}{4!}$
3) $\frac{9!}{10!}$
4) A_2^1
5) A_5^3
6) A_5^2
17) $\frac{A_3^2}{2!}$
8) $\frac{A_5^4}{4!}$
9) $\binom{2}{1}$
10) $\binom{5}{3}$
11) $\binom{5}{2}$
12) $\binom{10}{5}$
13) $\binom{4}{2} + \binom{4}{3}$
14) $\binom{9}{3} + \binom{9}{4}$

- Exercice 2 -

Soient des ensembles $E, A \subset E$ et $B \subset E$ tels que $\operatorname{Card}(E) = 5$, $\operatorname{Card}(A) = 3$, $\operatorname{Card}(B) = 2$ et $\operatorname{Card}(A \cap B) = 1$. Calculer les valeurs suivantes.

- 1) $Card(A \times B)$
- 5) $Card(B \setminus A)$
- 2) $Card(A \cup B)$
- 6) $\operatorname{Card}(\mathcal{P}(A))$
- 3) $\operatorname{Card}(A^c)$
- 7) $\operatorname{Card}(\mathcal{P}(B))$
- 4) $\operatorname{Card}(A \setminus B)$
- 8) $\operatorname{Card}(A^c \cup B^c)$

- Exercice 3

Il y a 18 chevaux au départ d'une course de chevaux. Un tiercé est la liste des 3 chevaux en tête à la fin de la course.

- 1) Combien y a-t-il de manières de ranger les chevaux dans les 18 boîtes de départ?
- 2) Combien y a-t-il de tiercés possibles dans le désordre, c'est-à-dire sans tenir compte de l'ordre?
- 3) Combien y a-t-il de tiercés possibles dans l'ordre, c'est-à-dire en tenant compte de l'ordre?

- Exercice 4 -

- 1) Un grille de loto contient 49 numéros, combien y a-t-il de manières de cocher 5 numéros? Il y a en plus un numéro chance à choisir parmi 10. Combien y a-t-il alors de possibilités?
- 2) Une grille d'euromillions est composée de 5 numéros à choisir parmi 50 et 2 étoiles parmi 12. Combien y a-t-il de possibilités?