Jean-Marie Valance • Bernard Poussery

LE CARNET DU RÉGLEUR MESURES ET RÉGULATION

19^e ÉDITION

DUNOD

Pour aller plus loin et mettre toutes les chances de votre côté, des ressources complémentaires sont disponibles sur le site www.dunod.com.

Connectez-vous à la page de l'ouvrage (grâce aux menus déroulants, ou en saisissant le titre, l'auteur ou l'ISBN dans le champ de recherche de la page d'accueil). Sur la page de l'ouvrage, sous la couverture, cliquez sur le lien « LES + EN LIGNE ».

Illustration de couverture : DifferR/ShutterStock.com

DANGER

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autori-

sation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd'hui menacée. Nous rappelons donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l'auteur, de son éditeur ou du Centre français d'exploitation du

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

Dunod, 2007, 2009, 2011, 2014, 2017, 2022 © Valance pour les 13 premières éditions 11 rue Paul Bert, 92240 Malakoff www.dunod.com ISBN 978-2-10-083685-7

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

Table des matières

L'histoire du Carnet du Régleur	XV
Avant-propos de l'édition initiale	XVII
Introduction	XIX
Comment utiliser le carnet ?	XX
1 Préliminaires	1
1.1 Un peu de calcul	1
1.1.1 Les unités composées et le changement d'unités	1
1.1.2 La règle de trois	2
1.1.3 Fonction linéaire	5
1.1.4 Construction graphique	5
1.2 Le rappel indispensable des unités	8
1.2.1 Définitions des unités de base	8
1.2.2 Quelques unités dérivées	9
1.3 Un peu de physique	10
1.3.1 Forces et moments de force	10
1.3.2 L'atome et les rayonnements	11
1.4 Un peu d'électricité	13
2 Notions générales	15
2.1 Les instruments et le procédé	15
2.1.1 Notions de capteurs-transmetteurs	15
2.2 Les différents types d'instruments	16
2.3 Organisation des chaînes de mesure	17
2.4 Les signaux en instrumentation	18

	2.5 Le raccordement électrique des instruments 4-20 mA	19
	2.5.1 Capteur 2 fils (capteur passif)	19
	2.5.2 Capteur 4 fils (capteur actif)	20
	2.5.3 Capteur 3 fils	21
	2.6 Interface HART	21
	2.6.1 Paramétrage	23
	2.6.2 Interface de communication HART (pockette)	26
	2.6.3 PC et logiciels de configuration	29
	2.7 Bus de terrain	36
	2.7.1 Le protocole Profibus	36
	2.7.2 Fieldbus Foundation	37
	2.8 Les transmetteurs sans fils	39
3	Pression	41
	3.1 Définition	41
	3.2 Mécanique	43
	3.3 Définitions des différentes pressions	43
	3.3.1 La pression atmosphérique	43
	3.3.2 La pression relative	44
	3.3.3 La pression absolue	44
	3.3.4 La pression statique	44
	3.3.5 La pression dynamique	44
	3.3.6 La pression totale	45
	3.4 Hydrostatique	45
	3.4.1 La pression s'exerce perpendiculairement aux surfaces	45
	3.4.2 Sur la même horizontale, il y a la même pression (dans un liquide qui ne circule pas)	45
	3.4.3 Théorème de Pascal	45
	3.5 Les instruments de mesurage des pressions	47
	3.5.1 Colonnes de liquide	47
	3.5.2 Instruments métalliques	49
	3.5.3 Capteurs de pression	51
	3.5.4 Transmetteur numérique « intelligent » ou « smart »	56
	3.5.5 Raccordement électrique des transmetteurs de pression	58
	3 5 6 Pressostats	59

Table des matières

	3.6 Les moyens d'ajustage en mesurage de pression	59
	3.6.1 Simuler	60
	3.6.2 Mesurer	60
	3.6.3 Ajuster	60
	3.7 Implantation des capteurs de pression	61
4	Débits des fluides	63
	4.1 Caractéristiques des fluides	63
	4.1.1 Masse volumique des liquides	63
	4.1.2 Masse volumique des gaz	63
	4.1.3 Densité	64
	4.2 Viscosité	66
	4.2.1 Viscosité dynamique	67
	4.2.2 Viscosité cinématique	67
	4.2.3 Relation viscosité dynamique vs viscosité cinématique	67
	4.2.4 Détermination de la viscosité	68
	4.2.5 Autres unités de viscosité	68
	4.3 Régimes d'écoulement	68
	4.4 Perte de charge	73
	4.5 Définitions des débits	73
	4.5.1 Débit volumique	74
	4.5.2 Débit massique	74
	4.6 Mesurage des débits	75
	4.6.1 Classification des méthodes	75
	4.6.2 Mesure des débits volumiques	76
	4.7 Débitmétrie des gaz – Correction en pression et en température	100
	4.8 Débitmètres massiques	103
	4.8.1 Introduction	103
	4.8.2 Débitmètres massiques à force de Coriolis	104
	4.8.3 Débitmètres massiques thermiques	109
	4.9 Longueurs droites amont et aval	111
	4.10 Choix d'une solution de débitmètrie	112

4.11 Contrôleurs de débit	112
4.11.1 Débitmètres à cible (solution mécanique)	113
4.11.2 Contrôleur électromagnétique (solution électronique)	113
4.11.3 Contrôleur de débit à partir d'un débitmètre à flotteur	113
4.12 Compteurs volumétriques	114
4.12.1 Compteur à roues ovales	114
4.12.2 Autre type de compteur : les compteurs à pistons rotatifs	114
4.13 Calculs relatifs aux débits	115
4.13.1 Calcul du diamètre d'une conduite	115
4.13.2 Calculs usuels sur les débits mesurés par organes déprimogènes	115
4.13.3 Calcul des organes déprimogènes	118
4.14 Calcul de débit gazeux	118
4.14.1 Quantité de gaz	118
5 Mesure des masses volumiques, pH et conductivité	121
5.1 Mesure des masses volumiques	121
5.1.1 Introduction	121
5.1.2 Mesure par source radioactive	121
5.1.3 Capteurs à tubes vibrants	122
5.1.4 Densimètre à diapason	126
5.1.5 Mesure de la masse volumique des gaz : densimètre à cylindre vibrant	126
5.1.6 Mesure par ultrasons, détection d'interface	127
5.2 Introductions à la pH métrie	128
5.2.1 Introduction	128
5.2.2 Notions théoriques	128
5.2.3 Principe de la mesure	132
5.2.4 Vérification et étalonnage	143
5.3 Mesure de conductivité	144
5.3.1 Notions fondamentales	144
5.3.2 Mesure de la conductivité d'une solution	144
5.3.3 Unité de conductivité	145
5 3 4 Dispositif de mesure de conductivité	148

5.3.5 Étalonnage et entretien	153
5.3.6 Principe d'un conductimètre	156
5.3.7 Mise en œuvre d'une mesure de conductivité	156
Températures	159
6.1 Spécificités et difficultés	159
6.1.1 Première difficulté (ou premier sujet de réflexion)	159
6.1.2 Deuxième difficulté (deuxième sujet de réflexion)	160
6.1.3 Troisième difficulté (troisième sujet de réflexion)	160
6.2 Échanges thermiques	160
6.3 Unités	161
6.3.1 Étalons primaires	163
6.3.2 Contrôle des capteurs	163
6.3.3 Principes physiques utilisés pour les capteurs de températures	164
6.4 Organisation d'une chaîne de mesure de température	164
6.5 Principes des thermocouples	165
6.5.1 Effets thermoélectriques	165
6.5.2 Application de l'effet Seebeck à la mesure de température	166
6.5.3 Principaux types de thermocouple	172
6.5.4 Réalisation des thermocouples	173
6.5.5 Raccordement des thermocouples	175
6.5.6 Récepteurs spécifiques associés aux couples thermoélectriques	176
6.5.7 Contrôle des thermocouples et ajustage des récepte	eurs 178
6.6 Sondes à résistances	180
6.6.1 Notions de résistivité	180
6.6.2 Principe des sondes à résistance	180
6.6.3 Mesure de la résistance	184
6.6.4 Exploitation de l'information délivrée par la sonde p	latine 185
6.6.5 Travail du régleur	186
6.6.6 Comparaison thermocouple/Pt100	187
6.6.7 Logiciel mesure des températures	187

6.7 Convertisseurs numériques	188
6.8 Mesurage optique des températures	190
6.8.1 Pyromètres optiques et thermomètres à infrarouge	190
6.8.2 Les pyromètres optiques	195
6.8.3 Autres appareils	200
6.9 Corrigés des exercices de la page 171	201
7 Niveaux	203
7.1 Généralités	203
7.2 Présentation des techniques de mesurage	204
7.2.1 Mesurage de d	204
7.2.2 Mesurage de h	204
7.2.3 Niveau à flotteur	205
7.2.4 Plongeurs soumis à la poussée d'Archimède	206
7.2.5 Appareils utilisant des plongeurs	207
7.3 Mesurages de niveaux par mesurage de pression	209
7.3.1 Méthode hydrostatique ou mesurage direct	210
7.3.2 Mesurage par insufflation	213
7.4 Mesurage de niveaux par sonde capacitive	215
7.5 Mesure de niveau par ultrasons	217
7.5.1 Principe	217
7.5.2 Configuration d'un capteur	217
7.5.3 Positionnement du capteur	218
7.5.4 Points importants	218
7.5.5 Domaines d'application	219
7.5.6 Limitations d'application	219
7.5.7 Intérêts de la mesure de niveau par ultrasons	219
7.5.8 Difficultés de la mesure de niveau par ultrasons	219
7.6 Mesure de niveau radar	220
7.6.1 Introduction	220
7.6.2 Principe général de la mesure	220
7.6.3 Technologie des radars sans contact	221
7.7 Technologie des radars à impulsions guidées	226
7.7.1 Principe de fonctionnement	226

Table des matières

7.7.2 Les différents modèles de sonde	227
7.7.3 Installation	227
7.7.4 Avantages	228
7.7.5 Domaines d'application	228
7.7.6 Limites d'application	228
7.8 Comparaison mesure par ultrasons contre mesure par radar	228
7.9 Mesure de niveaux par rayons gamma (γ)	229
7.9.1 Principe	229
7.9.2 Quelques définitions parfois absentes des notices	229
7.10 Technologie des détecteurs de niveau	230
7.10.1 Systèmes vibrants	231
7.10.2 Palette rotative	231
7.10.3 Détecteur capacitif	231
7.10.4 Barrière micro-ondes	232
8 Implantation des capteurs	233
8.1 Introduction	233
8.2 Montage des transmetteurs	234
8.2.1 Sur les liquides	234
8.2.2 Sur les gaz	234
8.2.3 Sur la vapeur	234
8.3 Moyens de protection des capteurs	235
8.4 Utilisation de bloc manifold	237
9 Les organes de réglage : vannes régulatrices ou	
pompes à vitesse variable	239
9.1 Introduction	239
9.2 Vannes régulatrices - Introduction	239
9.3 Principaux constructeurs de vannes de régulation	240
9.4 Technologie des vannes de régulation	240
9.4.1 Les différents modèles de vanne régulatrice	241
9.4.2 Les actionneurs des vannes de régulation	245
9.4.3 Positionneur	249

9.5 Calcul d'une vanne automatique	253
9.5.1 Introduction au calcul	253
9.5.2 Principe du dimensionnement d'une vanne de régulation	254
9.5.3 Définition du Cv	254
9.6 Caractéristiques de débit d'une vanne régulatrice	257
9.6.1 Caractéristiques de débit « intrinsèque »	258
9.6.2 Caractéristiques de débit « vanne installée » ou « caractéristique réelle »	262
9.6.3 Autorité de la vanne	263
9.6.4 Règle du choix de la caractéristique	267
9.7 Entretien des vannes	270
9.7.1 Réglages	271
9.7.2 Mode opératoire	271
9.8 Cavitation	271
9.8.1 Introduction	271
9.8.2 Cas de la cavitation	272
9.8.3 Coefficient caractérisant la cavitation	272
9.9 Vannes de régulation en « Split Range » ou échelle partagée	276
9.9.1 Introduction	276
9.9.2 Réacteur discontinu avec une réaction exothermique	277
9.9.3 Une régulation dans un bac de neutralisation	278
9.10 Pompes centrifuges entraînées en vitesse variable	279
9.10.1 Rappel	280
9.10.2 Courbe de pompe centrifuge	280
9.10.3 Point de fonctionnement	280
9.10.4 Modification de la vitesse de rotation en utilisant	
un variateur de vitesse	282
9.10.5 Paramétrage des limites de vitesse du variateur	285
9.10.6 Avantages et inconvénients de la variation de débit à l'aide d'une pompe centrifuge entraînée	005
à vitesse variable	285
9.11 Conclusion	285
10 Accessoires	287
10.1 L'air instrument	287
10.1.1 Production et traitement de l'air comprimé	288
10.1.2 Détendeurs	290

	10.2 Alimentation et câblage électrique	290
	10.3 Isolation galvanique	291
	10.4 Éléments de technologie pneumatique	292
	10.4.1 Détection et amplification pneumatique	293
	10.5 Les convertisseurs P/I et I/P (Pression/Intensité et Intensité/Pression)	297
	10.5.1 Rôle	297
	10.5.2 Schéma de principe d'un convertisseur P/I	297
	10.5.3 Schéma de principe d'un convertisseur I/P	299
	10.6 Les instruments de calcul (opérateurs analogiques ou numériques)	299
	10.6.1 Règles d'écriture en « échelle normalisée »	300
	10.6.2 Calcul en « échelle normalisée »	300
11	Régulateur et boucle de régulation	303
	11.1 Introduction	303
	11.2 Besoin de régulation	303
	11.3 Constitution d'une boucle de régulation	304
	11.4 Le régulateur	305
	11.4.1 Schéma de principe d'un régulateur PID	306
	11.4.2 Modes de fonctionnement d'un régulateur Auto/Manu	307
	11.4.3 Sens d'action d'un régulateur	307
	11.5 Objectifs d'une boucle de régulation	309
	11.6 Les actions PID (proportionnelle, intégrale et dérivée)	310
	11.6.1 Fonction proportionnelle	310
	11.6.2 La fonction intégrale	315
	11.6.3 Fonction dérivée	319
	11.7 Configuration d'un régulateur numérique	329
	11.8 Vérification du fonctionnement d'un régulateur	330
12	Procédé	333
	12.1 Introduction	333
	12.2 Étude du procédé en vue de la régulation	333
	12.3 Réponse du procédé	334
	12.4 Procédé naturellement stable et procédé naturellement instable	335

	12.5 Obtention des réponses des procédés	336
	12.6 Étude des réponses des procédés naturellement stables	336
	12.6.1 Gain statique	337
	12.6.2 Constante de temps	337
	12.6.3 Temps de réponse	337
	12.7 Étude des réponses des procédés naturellement instables	339
	12.8 Identification de procédé	340
	12.9 Identification en mode automatique	340
	12.9.1 Procédés naturellement stables	341
	12.9.2 Procédés naturellement instables	342
	12.10 Limites	342
13	Schémas de régulation et mise en œuvre	343
	13.1 Schémas fonctionnels	343
	13.1.1 Régulation en « boucle fermée »	343
	13.1.2 Automatisme en « chaîne ouverte »	343
	13.1.3 Régulation mixte (« boucle fermée » + « chaîne ouverte »)	344
	13.1.4 Régulation cascade	344
	13.2 Régulation discontinue	345
	13.2.1 Action « Tout ou Rien » (discontinue)	345
	13.2.2 Régulation flottante (discontinue)	345
	13.3 Calculs des réglages PID	345
	13.3.1 Régulation proportionnelle	345
	13.3.2 Action P + I	347
	13.3.3 Action dérivée	347
	13.4 Mise en service d'une régulation	347
	13.4.1 Instructions de mise en service d'une boucle simple	347
	13.4.2 Mise en service d'une régulation mixte	349
	13.4.3 Mise en service d'une régulation cascade	349
	13.5 Cas particuliers	350
	13.6 Régulation numérique et Système numérique de contrôle commande (SNCC)	350

14 Notions complémentaires	353			
14.1 Notions de métrologie				
14.1.1 Définitions	353			
14.1.2 Incertitudes de mesure	358			
14.1.3 Démarches de l'instrumentiste	360			
14.2 Instrumentation en zone ATEX	367			
14.2.1 Définition d'une atmosphère explosive (ATEX)	367			
14.2.2 Comment une ATEX peut-elle exploser?	368			
14.2.3 Modes de protection des matériels ATEX	369			
14.2.4 Directives européennes ATEX	371			
14.3 Les sécurités instrumentées et le SIL (Safety Integrated Level)	373			
14.3.1 Le risque industriel	373			
14.3.2 La norme IEC 61511	374			
14.3.3 L'approche probabiliste du risque (LOPA)	374			
14.3.4 La conception de la fonction SIL	376			
14.3.5 La mise en œuvre d'un système de sécurité instrumenté	377			
14.3.6 La maintenance du système de sécurité instrumenté	378			
14.3.7 Les avantages de l'approche IEC 61511 pour les sécurités	379			
14.4 Notions sur les ultrasons	379			
14.5 Application de la loi de Coriolis à la débitmètrie	381			
Index	389			
Annexes (les annexes sont à télécharger sur le site www.dunod.com)				
A.1 Alphabet grec				
A.2 Unités				
A.3 Unités USA				
A.4 Puissance et énergie				
A.5 Décibel (dB)				
A.6 Bruit				
A.7 Compatibilité électromagnétique (CEM)				
A.8 Désignation des tubes				
A.9 Perte de charge				

- A.10 Dilatation des métaux
- A.11 Eau
- A.12 Masses volumiques et caractéristiques de divers solides
- A.13 Masses volumiques des liquides
- A.14 Masses volumiques des gaz
- A.15 g, coefficient d'accélération de la pesanteur
- A.16 Humidité (mesure d')
- A.17 Humidité de l'air « point de rosée »
- A.18 Indice de protection (IP)
- A.19 Log et log
- A.20 Trigonométrie
- A.21 Moyennes arithmétiques, géométriques, quadratiques
- A.22 Notations du calcul opérationnel
- A.23 Fonction de transfert du 1er ordre
- A.24 Analyse liquide Quelques notions
- A.25 Résistivité et conductivité d'un liquide
- A.26 Constante diélectrique
- A.27 Poussée d'Archimède
- A.28 Pouvoirs calorifiques
- A.29 Représentation conventionnelle et repérage des instruments
- A 30 Teintes conventionnelles
- A.31 Table de référence des Sondes Platine Pt 100
- A.32 Table de référence des couples J
- A.33 Table de référence des couples K
- A.34 Table de référence des couples N
- A.35 Table de référence des couples T
- A.36 Table de référence des couples S
- A.37 Table de référence des couples E
- A.38 Table de référence des couples B
- A.39 Température de fusion
- A.40 Transmission de chaleur
- A.41 Exemples de calcul
- A.42 Équation du transmetteur
- A.43 Profil de vitesse

L'histoire du Carnet du Régleur

Michel Feuillent, Jacques Guinet, Bernard Poussery, Co-auteurs du Carnet du Régleur, tiennent à rendre un grand hommage à Jean-Marie Valance, le « père » de cette bible de la profession.

Ce livre a une histoire : celle d'un homme Jean-Marie Valance, celle de jumeaux Jean-Marie et son frère Jean-Claude, celle d'un couple : Jean-Marie et Corinne, celle de trois collègues et amis Jacques Guinet, Michel Feuillent et moi-même.

Jean-Marie Valance était un homme d'expérience. Il commença sa carrière d'ingénieur comme régleur en instrumentation dans les différentes centrales nucléaires où la société Comsip était chargée de la régulation et des automatismes.

En 1969, Daniel Dindeleux alors Directeur de l'Institut de Régulation et d'Automation d'Arles, le recrute comme Ingénieur Formateur. Jean Marie dispensait les cours en instrumentation et régulation, à différents niveaux. Au début des années 80, il prend conscience qu'il n'existe, dans la littérature technique française, aucun ouvrage de vulgarisation sur les techniques de mesures industrielles et de régulation. Il décide donc de combler ce manque.

Son livre, il l'imagine pratique. Il doit apporter les réponses aux questions que se posent les techniciens instrumentistes (les régleurs) dans la pratique quotidienne de leur métier. L'ouvrage doit être à portée de main... et dans la caisse à outils.

Jean-Marie se met alors en quête d'un éditeur. Sans même avoir vu le livre, les éditeurs techniques contactés valident immédiatement le projet. Un seul point de blocage : le prix envisagé. Jean-Marie le trouve trop élevé, il ne souhaite pas que le prix soit un obstacle.

Il abandonne son poste d'ingénieur-formateur pour se mettre en travailleur indépendant comme auteur, éditeur...

Pour obtenir les fonds nécessaires à son entreprise, il vend une partie de ses biens personnels.

Son frère jumeau, pharmacien de son état, a apporté une large contribution... Leur collaboration était symbolisée par un dessin, situé en 4^e de couverture, représentant deux petits bonshommes qui se tiennent par la main.

Jean-Marie était bien connu dans le métier, il introduit des pages de publicité pour couvrir les frais de réalisation. Tous les grands noms de l'instrumentation répondront favorablement à sa demande.

Lors de la première édition, Jean-Marie a dû tout créer. Les moyens informatiques de l'époque étaient balbutiants. Pour les textes, ce n'était pas compliqué : Jean-Marie connaissait l'histoire par cœur. Mais, la frappe des équations n'était pas très conviviale, et surtout le dessin des figures. Jean-Marie a ciselé avec patience (et humour) toutes les illustrations.... Ça a été un vrai travail de moine.

Le livre a vu le jour.

Les ouvrages de cette première édition se sont vendus par le bouche-à-oreille.

Les choses se sont ensuite mieux organisées. Corinne était présente sur les salons professionnels, elle s'occupait également de l'avant-vente ainsi que des différents aspects commerciaux.

À chaque édition, pour tenir compte de l'évolution des techniques de mesure et de régulation, le *Carnet du Régleur* était mis à jour, amélioré, complété. En 2003, l'état de santé de Jean-Marie s'étant dégradé, il n'eut plus la capacité d'actualiser l'ouvrage. Corinne a alors sollicité deux amis : Jacques Guinet et Michel Feuillent. Ils ont travaillé en restant le plus fidèle possible à son esprit qui était de faire du *Carnet du Régleur* « l'élément indispensable de la boîte à outils du régleur ».

Jusqu'à la 17e édition, Jacques et Michel ont assuré l'évolution du livre. Tâche plus difficile qu'il n'y paraît : il fallait respecter l'état d'esprit du Carnet tout en intégrant de nouveaux chapitres.

En 2007, pour la 14e édition, Corinne confie la réalisation de l'ouvrage aux Éditions Dunod. Cette évolution a permis de rénover complètement le graphisme et la mise en page. Le Carnet a connu une véritable cure de jouvence.

Pour ma part, j'ai commencé à collaborer au Carnet, sans que mon nom n'apparaisse, à partir de 2004 (13e édition). Ma contribution était modeste.

C'est à partir de la 17^e que j'apparais comme co-auteur, le 4^e, Jacques et Michel m'ayant demandé d'assurer la relève.

Lors de la 18e édition, Jacques et Michel m'ont laissé « les clés du camion » ! Je tiens à remercier Corinne, Jacques et Michel de la confiance qu'ils m'ont accordée.

De la 1^{re} édition (1984) à la 18^e, le *Carnet du Régleur* s'est vendu à plus de 40 000 exemplaires (sans compter les éditions « pirates »... il existerait une même version russe).

Aujourd'hui, j'ai le plaisir de vous présenter cette 19^e édition. Cette version a été mise à jour, le nombre de pages a été augmenté, de nouveaux thèmes ont été introduits, Pour gagner la place nécessaire, les annexes seront à télécharger depuis le site Internet de Dunod.

Le Carnet a été le compagnon de route de ma vie professionnelle, je souhaite au lecteur qu'il en soit de même pour lui.

Jacques Guinet et Michel Feuillent, ainsi que Daniel Dindeleux, ont été mes maîtres, ils m'ont communiqué leur passion du métier et m'ont fait partager leur expérience.

J'adresse mes plus vifs remerciements à Claude Tourniaire, Laurent Roy, Michel Feuillent et Alain Lundahl pour l'aide qu'ils m'ont apportée.

 $\begin{array}{c} \textbf{Bernard Poussery} \\ \textbf{Ingénieur CNAM} \\ \textbf{4}^{\textbf{e}} \ \textbf{co-auteur du} \ \textit{Carnet du Régleur} \end{array}$

Avant-propos de l'édition initiale

C'était dans les années 1950 ; élève de l'enseignement technique, j'étais, pendant les vacances scolaires, en stage dans l'usine de produits chimiques où travaillait mon père. « Nous nous sommes occupés de la puissance », a-t-il dit en parlant de sa génération, « la vôtre fera le système nerveux de tout cela, elle s'occupera de l'information ».

Après le diplôme, Comsip m'a permis de démarrer dans le métier comme je le souhaitais : en déplacement, les outils à la main. En 1969, j'ai rencontré Daniel Dindeleux dans une baraque de chantier en Arles : l'Institut de Régulation démarrait.

Daniel Dindeleux m'a appris comment d'une théorie même compliquée, on peut tirer une pratique simple et quotidienne. Lorsque nous l'avons quitté, treize ans après, l'IRA était connu un peu partout dans le monde. La formation continue était devenue une nécessité pour suivre l'évolution technologique.

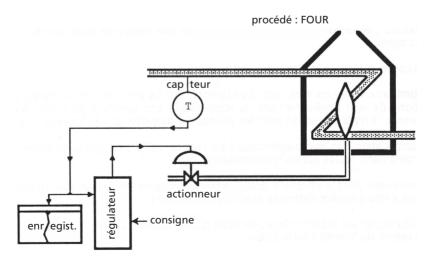
Et ça continue! Vite, très vite...

De nombreux capteurs sont dits « intelligents » car ils prennent en compte certaines variations de leur environnement, la température par exemple (le terme est plutôt surprenant : il n'est pas utilisé pour les plantes qui font cela depuis toujours...).

La multiplication des micro-ordinateurs permet de traiter, en grand nombre et quasi instantanément, toutes sortes d'informations. Ce traitement peut s'effectuer pratiquement n'importe où grâce aux réseaux (y compris à très grandes distances avec la télématique).

Il fallait insister sur les techniques de base qui demeurent utiles, voilà l'esprit du *Carnet du régleur*. J'espère qu'il rendra service à tous ceux qui, dans leur métier, côtoient l'appareillage de mesure et de régulation.

À tous ceux-là : bon courage.


Cordialement,

Jean-Marie VALANCE Ingénieur ENSCM/ENSMM Régleur, animateur de formation, auteur, éditeur...

Introduction

Pour construire une boucle de régulation, comme le montre la figure ci-dessous, pour réguler la température de produit sortant d'un four, il faut :

- ▶ Obtenir des informations sur l'état du procédé (pression, débit, température, niveau, etc.) qui devront être envoyées aux autres appareils de la boucle. Ceci fait l'objet des chapitres 3 à 7 concernant les mesures : Pressions, Débits, Masse volumique, Températures et Niveaux.
- ▶ Mettre en place les instruments et les raccorder électriquement, ces aspects sont traités au chapitre 2 Notions générales et au chapitre 8 Implantation des capteurs.
- ► Indiquer, enregistrer, transformer les signaux, toutes ces fonctions sont étudiées dans le chapitre 10 Accessoires.
- ► **Agir sur le procédé** pour modifier son état, c'est le rôle des actionneurs : cela est traité au chapitre 9 sur les **Vannes** et les pompes à vitesse variable.
- ► Comparer la valeur de la grandeur mesurée à la valeur souhaitée par l'exploitant (consigne) et commander l'actionneur en fonction de l'écart entre ces deux valeurs, c'est le rôle du régulateur vu au chapitre 11.

▶ Pour modifier la grandeur mesurée, il faut connaître la façon dont elle évolue quand on agit sur la grandeur de réglage, c'est l'étude du **Procédé** au chapitre 12.

► Choisir le (ou les) régulateur(s), étudier les réglages permettant d'obtenir, quelles que soient les perturbations, une grandeur réglée stable et proche de la consigne, c'est l'art de la **Régulation** abordée au chapitre 13.

Les **Préliminaires** (chapitre 1) paraîtront fastidieux mais il est indispensable de les connaître pour comprendre les explications des chapitres qui suivent.

Des **indications complémentaires** et quelques chiffres, souvent utiles, sont donnés au chapitre 14 et en **annexes**.

Comment utiliser le carnet ?

- 1. Il est possible de lire le carnet comme un cours ; dans ce cas, il faut prévoir plusieurs semaines : un texte technique n'est pas un roman!
- 2. L'accès à un sujet précis est facile en utilisant la table des matières ou l'index.
- 3. Vous pouvez aussi procéder comme bon vous semble... après tout c'est vous qui lisez!

Le carnet ne peut pas être un catalogue de solutions immédiates aux problèmes de mesures et régulation mais il peut aider le régleur en instrumentation à chercher des solutions et il doit servir d'outil, parmi d'autres, pour l'acquisition de connaissances dans la pratique de l'instrumentation, dans l'art du mesurage et dans les techniques de régulation.

Dans ce livre, comme dans la pratique industrielle, il y a des choses simples et d'autres plus compliquées : il n'est pas nécessaire d'avoir compris toutes les choses compliquées pour tirer profit des choses simples !

Remarques

R1

Certaines **méthodes de calcul** paraissent longues et fastidieuses ; en fait, ce sont les explications très détaillées qui sont longues ; les méthodes elles-mêmes sont simples, rapides et sûres, sinon elles ne seraient pas dans le carnet...! Les calculs sont facilités par les logiciels que téléchargeables sur www.dunod.com

R2

Normalisation : nous reconnaissons tous l'importance de la normalisation dans notre activité professionnelle comme dans la vie quotidienne (si la visserie n'était pas normalisée ? Quel cauchemar!).

Alors pourquoi ne pas participer à cet effort collectif en modifiant (un peu) nos habitudes pour cette nécessité ?

- Utiliser les unités SI ou dire « l'ajustage d'un transmetteur » (le mettre au juste !) ne complique pas trop le travail, et quel avantage d'utiliser ce vocabulaire international défini par les normes !
- « Étalonnage » est en principe réservé à ceux qui disposent d'un « étalon » officiel.
- « Ajustage » n'est pas facile d'emploi pour ceux qui (comme l'auteur) en ont fait à la lime, pourtant l'expression « mise au juste d'un instrument de mesure » ne manque pas de charme.

R3

Capteurs-transmetteurs: dans les appareils de mesurage, il y a généralement une partie capteur et une partie transmetteur. Il est souvent important de distinguer ces deux parties. L'appellation de ces appareils devrait être « capteur-transmetteur » mais c'est un peu long ; en pratique, il est utilisé un seul de ces termes, étant entendu qu'un capteur qui ne transmet rien n'intéresse personne en régulation, pas plus qu'un transmetteur qui ne capte rien!

R4

Électronique/numérique: la technologie du matériel numérique appartient au domaine très général de l'électronique, mais la différence entre les instruments « analogiques » (mA, mV) et les instruments « numériques » (chiffres) est tellement importante que l'on considérera deux familles distinctes : « la régulation électronique » dans laquelle l'information circule sous la forme d'un courant standard (4-20 mA) et la « régulation numérique » où la transmission est faite par des impulsions représentant des nombres.

R5

Choix des unités pour un calcul : lorsqu'il n'y a que deux grandeurs en présence, on peut choisir les unités les plus commodes pour le calcul ; avec trois grandeurs ou plus, il n'y a plus le choix : il faut utiliser les unités SI.

R6

10⁵, 10-6, etc. (« dix puissance cinq, dix moins six, etc. ») : **les puissances de dix** sont un moyen commode d'écrire les nombres comportant beaucoup de zéros, mais elles présentent peu d'intérêt dans l'utilisation des calculettes. Elles ne seront pratiquement pas utilisées dans le carnet.

Préliminaires

1.1 Un peu de calcul

L'entretien des instruments de mesure et régulation n'exige pas des connaissances mathématiques importantes ; en revanche, il faut savoir effectuer rapidement et sûrement de nombreux petits calculs.

Compte tenu de l'état d'énervement et/ou de fatigue durant une intervention, il est bon d'acquérir pour ces calculs un « automatisme... infaillible ».

1.1.1 Les unités composées et le changement d'unités

Deux exemples de conversion :

- ► 144 km/h = combien de m/s?
- ▶ $8 \text{ l/s} = \text{combien de m}^3/\text{h}$?

Il y a un truc : écrire les unités composées sous leur forme réelle, puis changer les unités simples.

144 km à l'heure (ou par heure) = 144 km divisés par une heure.

144 km = 144 000 m.

1 h = 3 600 s

$$\frac{144 \text{ km}}{1 \text{ h}} = \frac{144\ 000 \text{ m}}{3\ 600 \text{ s}} = \frac{144\ 000 \text{ m}}{3\ 600 \text{ s}}$$

et annoncer : 144 km/h = 40 m/s.

L'autre exemple : $8 l/s = combien de m^3/h$?

 $81 = \frac{8}{1000}$ m³ Notez l'utilisation des fractions, beaucoup plus sûre que l'écriture avec des 0 (81 = 0.008 m³).

$$1 \text{ s} = \frac{1}{3600} \text{h}.$$

 $\frac{8 \, l}{1 \, s} = \frac{\frac{8}{1 \, 000} \, m^3}{\frac{1}{3 \, 600} \, h}$ Impressionnante fraction de fractions, mais rappelez-vous : on ne divise pas par une fraction, on multiplie par l'inverse.

$$\frac{81}{1 \text{ s}} = \frac{8}{1000} \times \frac{3600}{1} = 28.8 \text{ m}^3/\text{h}$$

1

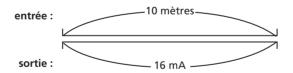
Entraînez-vous avec:

25 kg/mn = ? tonne/h (1,5) 60 m/s = ? km/h (216) 24 tonnes/h = ? kq/s (6,66)

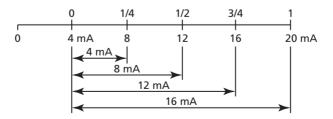
La calculatrice donne beaucoup trop de chiffres derrière la virgule. Il serait ridicule d'écrire 24 tonnes/h = 6,6666666 kg/s : le dernier chiffre représente le dixième de milligramme !

1.1.2 La règle de trois

Un transmetteur de niveau donne un signal de sortie variant de 4 à 20 mA quand le niveau varie de 0 à 10 m. Quel est le niveau si le signal est de 14 mA ?


Ce genre de questions se pose constamment pour toutes les grandeurs converties en signaux standards (4 à 20 mA, 3 à 15 PSI, 200 à 1 000 mbar).

Le piège est que ces signaux sont « décalés » : le zéro de la mesure ne correspond pas à 0 mA, 0 PSI, ou 0 mbar !

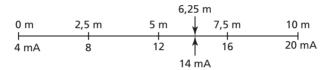

Le truc consiste à utiliser une représentation graphique c'est-à-dire un papier, un crayon et un croquis! Utiliser directement une calculette est une erreur : le résultat sera certainement faux. Il vaut mieux commencer par un croquis¹.

Cette représentation de l'information est reprise au chapitre « Notions générales », mais il faut déjà remarquer les notions d'« échelle d'entrée » et d'« échelle de sortie ».

Pour le signal de sortie, les nombres à utiliser dans les calculs ne sont pas les valeurs du signal :

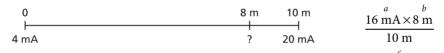
^{1.} Voir Remarque R1 de l'avant-propos.

Puisque le « zéro » est à 4 mA : 20 mA sur l'échelle représentent 16 mA dans les calculs (20-4). La moitié de l'échelle est à 12 mA (12-4=8) dans les calculs), le 1/4 de l'échelle est à 8 mA (8-4=4) dans les calculs), etc. D'où l'intérêt de faire un croquis!


Écrire la règle de trois : $\frac{1\times3}{2}$

- 1. On cherche des mètres, commencer par la pleine échelle en mètres (10 m).
- 2. Diviser par l'autre échelle (16 mA).
- 3. Multiplier par la donnée de la question (14 4 = 10 mA).

En écrivant les unités, on vérifie, en « simplifiant » qu'il reste des m (c'est ce que l'on


cherche):
$$\frac{10 \text{ m} \times 10 \text{ mA}}{16 \text{ mA}} = 6,25 \text{ m}.$$

Vérification immédiate en situant sur le croquis le résultat qui vient d'être trouvé.

6,25 m apparaît en meilleure position que les 7 m ou 8,75 m qu'on aurait pu trouver en oubliant le décalage d'échelle.

Autre exemple : même capteur-transmetteur que ci-dessus. Le niveau est de 8 m, combien de mA doit-il y avoir en sortie ?

- 1. On cherche des mA, on commence par l'échelle en mA.
- 2. On divise par l'autre échelle.
- 3. La donnée.

$$\frac{16 \text{ mA} \times 8 \text{ m}}{10 \text{ m}} = 12.8 \text{ mA}$$

Attention signal décalé : $\frac{+4 \text{ mA}}{16,8 \text{ mA}}$

Sur le croquis : à 8 m correspond un signal entre 16 et 20 mA, les 12,8 mA ne collent pas, c'est là qu'on se rappelle de + 4 mA, et à nouveau de l'intérêt du croquis !

Double décalage : un capteur-transmetteur de pression électronique (4-20 mA) a une échelle de 28 à 32 bars (si la valeur normale de fonctionnement se situe aux environs

de 30 bars, le fait d'utiliser une échelle réduite autour de cette valeur rend le capteurtransmetteur nettement plus sensible).

- 1. Quelle est la valeur du signal pour une pression de 30 bars ?
- 2. Quelle est la pression si le signal est à 16 mA?

Réponses: 1. 12 mA et 2. 31 bars (sans utiliser de calculatrice).

- 1. Quelle est la température si le signal est à 820 mbar ?
- 2. Quel est le signal pour 90 °C?

1.
$$\frac{100 \text{ °C} \times \frac{-200 \text{ mbar}}{620 \text{ mbar}}}{800 \text{ mbar}} \frac{\text{(décalage du signal)}}{\text{=} 77,5 °C} = \frac{77,5 °C}{127,5 °C}$$

$$\frac{90 °C}{127,5 °C} = \frac{90 °C}{100 °C} = \frac{320 \text{ mbar}}{100 °C} \frac{320 \text{ mbar}}{\text{(décalage du signal)}} = \frac{320 \text{ mbar}}{100 °C} = \frac{320 °C}{100 °C} = \frac{320 °C}{100 °C} = \frac{320 °C}{100 °C} = \frac{320$$

La règle de trois est évidemment plus simple si la sortie est exprimée en pourcentage de variation.

C'est-à-dire quand la valeur d'entrée varie du mini au maxi, la sortie varie de 0 à 100 %.

Cela revient à dire 4 mA, 3 PSI ou 200 mbar = 0 % et 20 mA, 15 PSI ou 1 000 mbar = 100 %.

La pleine échelle est 100 % ; la demi-échelle est 50 % ; le quart d'échelle est 25 %, etc.

15 m
100 %
32 bar
100 %

Dans ce cas, le décalage du signal disparaît des calculs. L'instrumentiste devra toutefois retenir que 0 % correspond à 4 mA, 3 PSI ou 200 mbar. Autrement dit, à 0 % le signal de sortie n'est pas nul (le signal de sortie est nul seulement si l'alimentation du capteur-transmetteur ou sa liaison est coupée !).

Remarque: l'utilisation de % s'applique aussi bien aux variations de l'entrée du capteurtransmetteur (grandeur mesurée) qu'aux variations du signal de sortie (4 à 20 mA, 3 à