BIOLOGIE-GÉOLOGIE MATHÉMATIQUES PHYSIQUE-CHIMIE INFORMATIQUE

BCPST 1 ET 2

FORMULAIRE

Daniel Fredon | Alexis Brès | Bérangère Godde | Jean-Noël Beury Christiane Perrier | Jean-François Beaux

BIOLOGIE-GÉOLOGIE MATHÉMATIQUES PHYSIQUE-CHIMIE INFORMATIQUE

BCPST 1 ET 2

FORMULAIRE

DUNOD

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autori-

sation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd'hui menacée. Nous rappelons donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l'auteur, de son éditeur ou du Centre français d'exploitation du

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

DANGER

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

Table des matières

Avant-propos	xi
Biologie – Géologie – Biogéosciences	
Biologie	1
SV-B Interactions entre les organismes et leur milieu de vie SV-C La cellule dans son environnement SV-E Le métabolisme cellulaire SV-I Communications intercellulaires et intégration d'une	1 4 7
fonction à l'organisme SV-J Populations et écosystèmes SV-K Évolution et phylogénie	12 18 24
Géologie	28
ST-B La structure de la planète Terre ST-C La dynamique des enveloppes internes ST-D Les déformations de la lithosphère ST-E Le phénomène sédimentaire ST-F Le magmatisme ST-G Le métamorphisme ST-H La mesure du temps : outils et méthodes	28 30 34 36 37 39 41
Biogéosciences	42
BG-A Les grands cycles biogéochimiques BG-B Les sols BG-C Le climat de la Terre	42 47 48

vi Table des matières

Mathématiques

1. Analy	/se	51
1.1 Les noi		51
	s et continuité des fonctions réelles	52
1.3 Suites 1		54
	tion des fonctions réelles	56
	ons circulaires et trigonométrie	57
	tion sur un segment	58
	ppements limités	60 60
	ons différentielles ons réelles de deux variables réelles	62
1.10 Séries		63
	rales généralisées	64
2. Algèh	ore générale	65
	<u> </u>	
	nts de logique	65
	ulaire des ensembles	68
	ulaire des applications	70 71
	es complexes s algébriques	75
2.5 Calculs 2.6 Dénom	e i	75 76
2.7 Polynô		78
3. Algèb	ore linéaire	79
3.1 Systèm	nes linéaires	79
3.2 Matrice		80
	vectoriel \mathbb{K}^n et sous-espaces vectoriels	82
	ations linéaires et matrices	84
	s propres, vecteurs propres	84
4. Géon	nétrie	86
4.1 Vecteur	rs du plan et de l'espace	86
	t scalaire dans \mathbb{R}^n	87
5. Statis	stique descriptive	88
5.1 Statistic	que univariée	88
	que bivariée	89

Table des matières	vii
6. Calcul des probabilités	89
6.1 Concepts de base des probabilités	89
6.2 Variables aléatoires discrètes	91
6.3 Variables aléatoires à densité	96
6.4 Théorèmes limites	98
Physique-chimie	
Thème S : Ondes et signaux	101
S.1 Propagation d'un signal	101
S.2 Signaux électriques en régime stationnaire	104
S.3 Dynamique d'un circuit électrique du premier ordre	106
S.4 Filtrage linéaire d'un signal	108
S.5 Interaction lumière-matière	110
Thème M : Mouvement et interactions	116
M.1 Description et paramétrage du mouvement d'un point	116
M.2 Lois de Newton	117
M.3 Approche énergétique du mouvement d'un point matériel	120
M.4 Oscillateurs mécaniques	122
M.5 Phénomènes de tension superficielle	125
M.6 Écoulements de fluides	126
M.6.1 Description des écoulements	126
M.6.2 Dynamique des fluides	128
Thème E : Énergie - conversion et transfert	131
E.1 Descriptions microscopique et macroscopique d'un système	131
E.2 Bilans d'énergie pour un système thermodynamique	134
E.3 Formulation et application des principes de la thermodynamique	
à l'étude des machines thermiques	138
E.4 Statique des fluides	140
E.5 Second principe de la thermodynamique	141
E.6 Description des systèmes fermés de composition variable	142
E.7 Application des principes de la thermodynamique à	
l'étude des transformations physico-chimiques	145
E.8 Changement d'état solide-liquide d'un mélange binaire	149

viii Table des matières

Thème C : Constitution et transformation	
de la matière	152
C.1 Constitution et cohésion de la matière à l'échelle	
des entités chimiques	152
C.1.1 Constitution et cohésion au sein des atomes	152
C.1.2 Cohésion au sein d'entités polyatomiques :	
molécules et ions	157
C.1.3 Constitution et caractérisation spectroscopique d'entités	
chimiques organiques	162
C.2 Transformations chimiques : évolution d'un système	
vers un état final	175
C.2.1 Prévoir l'état final d'un système, siège d'une	
transformation chimique	175
C.2.2 Application pour des transformations modélisées par	
des réactions acide-base	180
C.2.3 Application aux transformations modélisées par	
des réactions d'oxydoréduction	183
C.3 Constitution de la matière : relation entre structure	
des entités chimiques et propriétés	189
C.3.1 Relation entre structure des entités chimiques et	
interactions à l'échelle des entités chimiques	189
C.3.2 Relation entre structure des entités chimiques	
et propriétés physiques macroscopiques	191
C.4 Transformation de la matière : évolution temporelle	
d'un système	193
C.4.1 Modélisation macroscopique : lois de vitesse et	
loi d'Arrhenius	193
C.4.2 Modélisation microscopique : mécanismes réactionnels	
et lois de vitesse dans des cas simples	197
C.4.3 Catalyse, catalyseurs	200
C.5 Transformation de la matière en chimie organique	202
C.5.1 Transformations : du macroscopique au microscopique	202
C.5.2 Exemples de réactions usuelles en synthèse organique	204
C.5.3 Initiation à la stéréochimie dynamique des réactions	213
C.6 Transformation de la matière : évolution temporelle d'un système	214
C.7 Transformation de la matière en solution aqueuse	217
C.8 Transformation de la matière en chimie organique	223
C.8.1 Notions et capacités transversales développées lors de	222
transformations en chimie organique	223
C.8.2 Activation de la réactivité	224
C 8 3 Initiation à la stratégie de synthèse	237

Table des ma	itières ix
Thème T : Phénomènes de transport	240
T.1 Transport de matière diffusif	240
T.2 Conduction thermique	241
Informatique	
1. Programmation en Python	243
1.1 Type. Liste. Fonction	243
1.2 Structures de contrôle	246
1.3 Bibliothèques	248
1.4 Représentation graphique	251
2. Algorithmique	254
2.1 Algorithmique opérant par boucles simples	254
2.2 Lecture et écriture dans un fichier texte	256
2.3 Algorithmique opérant par boucles imbriquées	257
2.4 Recherche dichotomique	258
2.5 Matrices de pixels et images	259
2.6 Fonctions récursives	262
2.7 Tris2.8 Utilisation d'un dictionnaire	265 268
3. Bases de données	268
4. Graphes	274
4.1 File	274
4.2 Graphes	275
5. Méthodes numériques	278
5.1 Méthode des rectangles	278
5.2 Simulation de variables aléatoires	280
6. Méthodes numériques et statistiques	283
6.1 Méthode d'Euler	283
6.2 Méthodes statistiques	285
6.3 Exemples de thèmes libres	303

x Table des matières

7. Approfondissement des concepts informatiques	308
7.1 Approfondissement sur les graphes7.2 Exemples de tri récursif	308 310
7.3 Bases de données7.4 Apprentissage et classification	312 313
Annexe A : Formulaire de trigonométrie	317
 Angles associés Formules d'addition Formules de duplication Formules de linéarisation Transformation de sommes en produits Expressions en fonction de t = tan(a/2) Équations trigonométriques 	317 317 317 318 318 318 318
Annexe B : Unités et constantes fondamentales	319
 Unités du système international Constantes fondamentales Ordres de grandeur 	319 320 321
Annexe C : Constantes chimiques	322
 Constantes acido-basiques Potentiels standard rédox Zone de virage des principaux indicateurs colorés 	322 323 324
Annexe D : Classification périodique	325
Index de biologie – géologie – biogéosciences	329
Index des mathématiques	331
Index de la physique-chimie	333
Index de l'informatique	330

Avant-propos

Ce formulaire s'adresse aux étudiants des classes préparatoires scientifiques de BCPST 1^{re} et 2^e années.

Cette édition est conforme aux nouveaux programmes 2021-2022.

Pour chaque paragraphe, vous trouverez la mention **①** ou **②**, qui indique s'il s'agit d'une notion de première ou de deuxième année.

Le livre est scindé en quatre parties : biologie – géologie – biogéosciences, mathématiques, physique-chimie, informatique. Dans chaque partie, vous trouverez l'essentiel du cours, les principaux résultats étant mis en valeur par un support tramé.

À la fin de ce formulaire, un index vous permettra d'accéder rapidement à la notion que vous voulez réviser.

Des annexes font le bilan d'informations essentielles et parfois dispersées dans votre cours.

Ce livre est un outil pédagogique adapté aux révisions rapides avant un devoir. C'est aussi un puissant remède contre l'anxiété du trou de mémoire, en quelque sorte un anxiolytique sans les effets secondaires. Mais vous risquez toutefois une certaine accoutumance : quand vous aurez commencé à vous en servir, vous ne pourrez plus vous en passer, surtout à l'approche des concours (qui portent sur les deux années de prépa, ne l'oubliez pas).

Bon travail et bon apprentissage!

Les auteurs

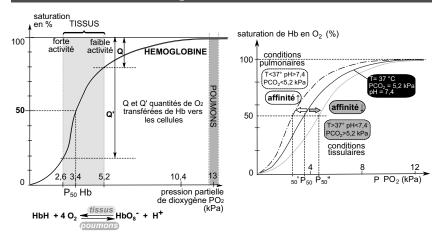
Biologie-Géologie-Biogéosciences

Biologie

SV-B Interactions entre les organismes et leur milieu de vie

1 Flux gazeux diffusif avec le milieu extérieur

Le passage d' O_2 et CO_2 , molécules lipophiles, au travers de diverses interfaces (paroi capillaire, épithélium respiratoire) est exclusivement réalisé par diffusion simple. Le flux diffusif J_x est donné par la loi de Fick :


$$J_{X\atop 1\to 2} = -K_x \cdot \left(\frac{S}{e}\right) \left(P_{X_2} - P_{X_1}\right) \left| \begin{array}{l} K_x : \text{constante de diffusibilité du gaz } X \; ; \\ S \; \text{et } e : \text{surface et épaisseur de l'interface} \; ; \\ P_{X_1} : \text{pression partielle du gaz } x \; \text{dans le compartiment i.} \end{array} \right|$$

Les flux de gaz par diffusion se font dans tous les cas suivant le gradient de pression partielle, qui peut être différent du gradient de concentration. Lorsqu'un gaz X est dissous dans un liquide, sa pression partielle P_x est celle du mélange gazeux avec lequel ce liquide serait en équilibre et la concentration C_x du gaz dissous est proportionnelle à sa pression partielle. D'après la loi de Henry :

$$C_X = \beta_X \cdot P_X$$
 β_X : coefficient de capacitance du milieu pour le gaz X .

2 [1] Biologie - Géologie - Biogéosciences

1 Transport de O, combiné à l'hémoglobine

La réaction entre hémoglobine et oxygène est réversible. Selon la loi de modération, au niveau des poumons, forte concentration en O_2 : déplacement de l'équilibre dans le sens direct (prise en charge de O_2); au niveau des tissus, faible concentration en O_2 : déplacement dans le sens de la livraison d' O_2 aux cellules.

Entre conditions pulmonaires et tissulaires, d'autres paramètres varient : au niveau des tissus, la pCO_2 et la température plus élevées ainsi que le pH plus faible favorisent la livraison de O_2 aux cellules.

1 Diverses formes de transport de CO, par le sang

Trois formes de transport du CO₂ par le sang :

- état dissous dans le plasma ;
- ions hydrogénocarbonates (HCO₃⁻), forme principale de transport du CO₂, issue de sa combinaison avec l'eau, réaction catalysée par l'anhydrase carbonique présente dans les hématies :

$$CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow HCO_3^- + H^+$$

• combinaison à l'hémoglobine sous forme de carbaminohémoglobine.

Absorption de l'eau du sol par la racine

Les flux d'eau des cellules se font par diffusion (processus encore appelé osmose) dans le sens des potentiels hydriques décroissants ; le potentiel hydrique d'une solution (noté Ψ) est une variable homogène à une pression (négative ou nulle) qui quantifie les différentes forces avec lesquelles cette solution retient ses molécules d'eau. Plus le potentiel hydrique est négatif, plus l'eau est retenue. L'eau pure a un potentiel de 0 Pa.

• Une formule générale de calcul s'écrit :

$$\Psi = \Psi_h + \Psi_o + \Psi_m + \Psi_g$$

 Ψ_{h} : potentiel hydrostatique, correspond à la pression exercée sur le liquide par son contenant :

 $\Psi_{\rm o}$: potentiel osmotique, résulte de l'effet attracteur des solutés sur l'eau ; plus la solution est concentrée en substances dissoutes, moins le potentiel osmotique est élevé ; le potentiel osmotique est l'opposé de la pression osmotique ;

 Ψ_{m} : potentiel matriciel, n'est important que lorsqu'il existe une interface entre le volume aqueux et l'air ;

 $\Psi_{\mbox{\tiny g}}$: potentiel gravitationnel, égal à la pression de la colonne de liquide.

• Pour le calcul du potentiel hydrique des cellules, seules deux composantes sont à prendre en compte en général : le potentiel osmotique (Ψ_{o}), et le potentiel hydrostatique qui correspond à la pression de turgescence P.

$$\Psi_{\rm cellule} = P + \Psi_{\rm o}$$

• Pour le sol, la composante hydrostatique est négligeable alors que la composante matricielle Ψ_m exprime la capacité du sol à retenir l'eau par capillarité ou adsorption à la surface des colloïdes (argiles, grosses molécules organiques).

$$\Psi_{\text{sol}} = \Psi_{\text{o}} + \Psi_{\text{m}}$$

• Le potentiel hydrique d'un sol arrosé est proche de 0 Pa. Les racines peuvent absorber l'eau du sol tant que $\Psi_{sol} > \Psi_{cellules\ racinaires}$

4 [1] Biologie - Géologie - Biogéosciences

Flux hydrique de la feuille à l'atmosphère (vapeur d'eau)

Le potentiel hydrique Ψ_{atm} de l'atmosphère dépend de son humidité relative :

$$\Psi_{atm} = \left(\frac{RT}{V_{H_2O}}\right) \ln{(HR)}$$

V_{H20}: volume molaire de l'eau;

R: constante des gaz parfaits;

T: température absolue;

HR: humidité relative (rapport de la pression partielle de la vapeur d'eau contenue dans l'air sur la pression de vapeur saturante à la même température).

HR étant < 1, Ψ atmosphérique est négatif, sauf en conditions saturantes où il est nul : les feuilles se déshydratent au contact de l'atmosphère. Le potentiel hydrique Ψ d'une atmosphère très sèche est de l'ordre de -100 MPa, c'est-à-dire beaucoup plus faible que celui du sol. La différence de potentiel hydrique entre la feuille et l'atmosphère détermine la sortie d'eau par transpiration et, par suite, la mise en mouvement de la sève brute.

SV-C La cellule dans son environnement

1 Échanges membranaires d'eau par osmose

Flux passifs d'eau selon les potentiels hydriques décroissants, à travers des membranes rendues perméables à l'eau par des canaux à eau (aquaporines). Pour calculer le potentiel hydrique (noté Ψ , exprimé en Pa) d'une cellule ou d'un compartiment extracellulaire d'un organisme, deux composantes sont prises en compte (les autres étant négligeables) :

- Une composante hydrostatique (notée Ψ_h ou P) : elle représente l'écart de pression entre le liquide considéré et la pression atmosphérique ; pour le liquide intracellulaire d'une cellule végétale c'est la pression exercée par la paroi ou pression de turgescence ; elle devient nulle en état de plasmolyse.
- Une composante osmotique (notée Ψ o) : le potentiel osmotique dépend de la capacité des solutés présents dans un milieu à retenir l'eau ; il est défini comme l'opposé de la pression osmotique π et est proportionnel à la concentration molaire de solutés.

$$\Psi_{\rm o} = -\pi = -\mathbf{R} \cdot \mathbf{T} \cdot \mathbf{C} \cdot 10^3$$

C: osmolarité, c'est-à-dire la quantité de matière des solutés par litre.

Le signe moins exprime le fait que l'eau est attirée par les solutés.

Au final : $\Psi = P + \Psi_0 = P - \pi$

Diffusion simple d'une molécule lipophile : A la loi de Fick

Le flux diffusif d'une espèce moléculaire X à travers une interface perméable à cette substance séparant deux milieux 1 et 2 entre lesquels le gradient de concentration est constant est décrit par la **première loi de Fick** :

$$\begin{split} F_{l\to 2} &= \frac{-D \cdot S \cdot \left([X]_2 - [X]_l \right)}{e} \\ &= -D \cdot S \cdot \frac{\Delta C_X}{e} \\ \end{split} \begin{tabular}{l} \hline mol.s^{-1}; \\ D: coefficient de diffusion en m^2.s^{-1}; il \\ dépend de la substance échangée; \\ S: aire de l'interface en m^2; \\ \Delta C_X: différence de concentration $[X]_2 - [X]_1$ en mol.m⁻³;$$

 $F_{1\rightarrow2}$: flux net de la substance de 1 vers 2 en mol.s⁻¹;

 $= -D \cdot S \cdot \frac{\Delta C_X}{e}$ $\Delta C_X : \text{ différence de concentration } [X]_2 - [X]_1$ en mol.m⁻³;

e : épaisseur de l'interface en m ; Δ C/e est alors le **gradient de concentration**.

Le signe négatif de la formule permet d'obtenir une valeur positive du flux diffusif si celui-ci est orienté du milieu 1 (plus concentré) vers le milieu 2 (moins concentré).

En biologie, les flux par diffusion simple s'effectuent à travers une bicouche lipidique membranaire sans intervention de protéines.

Potentiel électrochimique d'un soluté A dans un compartiment aqueux

Le potentiel électrochimique µ_s d'un soluté chargé S caractérise son énergie potentielle dans un compartiment. Il comprend un terme relatif à la concentration et un terme relatif à l'état électrique du milieu.

$$\mu_{S} = \mu_{S0} + R \cdot T \cdot lnC_{S} + z \cdot F \cdot V$$

 μ_{so} : potentiel électrochimique défini dans les conditions standards qui ne sont pas celles des cellules (pH = 7, température = 298 K, pression atmosphérique et concentrations de 1 mol.L⁻¹)

Le terme $R.T.lnC_s$ représente la **part chimique** du potentiel.

R, este des gaz parfaits ($R = 8.31 \text{ J.K}^{-1}.\text{mol}^{-1}$);

T, température (en K);

ln, logarithme népérien (soit 2,3 log₁₀);

 C_s , concentration de S (en mol.L⁻¹).

Le terme z.F.V représente la **part électrique** du potentiel.

z, valeur algébrique de la charge de l'ion ;

F, constante de Faraday ($F = 96500 \text{ C.mol}^{-1}$);

V, potentiel électrique du milieu (en V).

1 Passage actif ou passif entre deux compartiments

Le sens du passage d'un milieu à un autre est déterminé par la variation d'enthalpie libre, correspondant à la différence des potentiels électrochimiques des deux milieux. Le signe de cette différence définit le caractère actif ou passif un flux entre deux compartiments cellulaires.

$$\begin{split} \Delta G'_{i \to e} &= \mu_e - \mu_i \\ &= R \cdot T \cdot \ln(C_{Se} / C_{Si}) + z \cdot F \cdot (V_e - V_i) \end{split}$$

Pour un soluté non chargé, la contribution électrique est nulle. ΔG ': variation d'enthalpie libre du flux sortant de la substance S (': car on se réfère à un pH de 7);

R : constante des gaz parfaits ;

T : température absolue ;

z : charge de l'ion ;

F: constante de Faraday;

 \boldsymbol{C}_{s_e} et \boldsymbol{C}_{s_i} : concentrations molaires du soluté S dans chaque milieu ;

 $\boldsymbol{V}_{_{\boldsymbol{e}}}$ et $\boldsymbol{V}_{_{\boldsymbol{i}}}$: potentiels électriques (en V) de chaque face de la membrane.

- Si $\Delta G'_{i \to e} < 0$, le transfert de S de i vers e est exergonique (passage passif).
- Si $\Delta G'_{i\rightarrow c} > 0$, S ne peut sortir que par un transport actif.

Potentiel d'équilibre d'un ion ; 1 équation de Nernst

Le potentiel d'équilibre d'un ion dans une cellule est défini comme la différence de potentiel transmembranaire V_e - V_i pour laquelle le flux net de l'ion est nul : le flux selon le gradient de concentration (gradient chimique) équilibre celui selon le gradient électrique. Cette situation se caractérise par l'égalité du potentiel électrochimique de l'ion dans le compartiment intracellulaire (µ) et extracellulaire (μ_{e}) : $\mu_{e} - \mu_{e} = 0$. En utilisant la relation qui définit le potentiel électrochimique, on déduit E_x, valeur du potentiel d'équilibre d'un ion X (**équation de Nernst**).

$$E_{X} = \left(V_{e} - V_{i}\right)_{eq} = -\frac{R \cdot T}{z \cdot F} \cdot \ln \frac{[X]_{e}}{[X]_{i}}$$

$$V_{e} \text{ et } V_{i} \text{ : potentiels électriques (en V)}$$

$$de \text{ chaque face de la membrane ;}$$

$$R : \text{ constante des gaz parfaits ;}$$

$$T : \text{ température absolue ;}$$

$$z : \text{ charge de l'ion ;}$$

$$F : \text{ constante de Faraday.}$$

 $\left[X\right]_{\mathrm{e}}$ et $\left[X\right]_{\mathrm{i}}$: concentrations molaires de l'ion X dans chaque milieu ;

SV-E Le métabolisme cellulaire

Variation d'enthalpie libre d'une transformation

L'enthalpie libre G est une fonction d'état d'un système thermodynamique. La variation, au cours d'une transformation, de l'enthalpie libre du système (ΔG) permet de déterminer si l'état final est plus stable que l'état initial (transformation exergonique) ou l'inverse (transformation endergonique). La variation d'enthalpie libre d'une réaction chimique est notée ΔrG .

La variation d'enthalpie libre d'une transformation dépend des conditions physico-chimiques (température, pH) ainsi que des concentrations des espèces en jeu. Pour quantifier la variation d'enthalpie libre, on utilise les conventions de notation suivantes:

- ΔG° en conditions chimiques standards (concentration de toutes les espèces en jeu de 1 mol.L⁻¹, 25 °C, pH = 0);
- ΔG° ' en conditions biologiques standards (concentration de toutes les espèces en jeu de 1 mol.L⁻¹, 25 °C, pH = 7);
- ΔG ' avec les concentrations cellulaires, 25 °C, pH = 7.

Ce qui importe et donne le sens spontané d'une réaction dans une cellule est $\Delta G'$ dont la valeur est variable en fonction des concentrations cellulaires.

8

1

Formes d'énergie des cellules

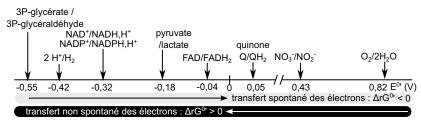
• Énergie d'hydrolyse de l'ATP : ATP + H₂O → ADP + Pi

 ΔrG° = -30,5 kJ.mol⁻¹ aux conditions biologiques standards;

 $\Delta rG' \approx -50 \text{ kJ.mol}^{-1}$ aux concentrations cellulaires.

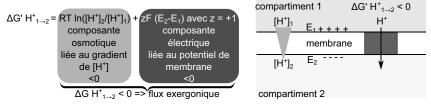
$$\Delta rG' = \Delta rG^{\circ\prime} + RT \ln ((ADP)(Pi)/(ATP))$$

Pi: phosphate inorganique


• Énergie des réactions d'oxydoréduction

n: nombre d'électrons transférés;
$$F: constante de Faraday (= 96 500 C.mol^{-1});$$

$$\Delta FG' = -nF\Delta E'$$


$$\Delta E': potentiel redox du couple de l'accepteur – potentiel redox du couple du donneur d'électrons (aux concentrations cellulaires).$$

Si $\Delta E' > 0$, alors $\Delta rG' < 0$: la réaction est **exergonique**. Le transfert d'électrons d'un couple à faible potentiel redox vers un couple à plus grand potentiel redox est thermodynamiquement spontané.

Échelle des potentiels redox standard de quelques couples

• Énergie de gradient transmembranaire

Calcul de la variation d'enthalpie libre d'un transfert de protons entre 2 compartiments

Bilan des principales voies du catabolisme oxydatif

Oxydation des substrats organiques et réduction des coenzymes d'oxydoréduction

• Glycolyse : oxydation partielle du glucose dans le cytosol :

$$C_6H_{12}O_6 + 2$$
 ADP + 2 Pi + 2 NAD⁺ \rightarrow 2 CH₃COCOOH + 2 ATP + 2 NADH,H⁺ glucose acide pyruvique

 Oxydation mitochondriale de l'acide pyruvique en acétyl-coenzyme A (acétyl-coA):

$$\text{CH}_3\text{COCOOH} + \text{HS-CoA} + \text{NAD}^+ \rightarrow \text{CH}_3\text{CO-S-CoA} + \text{CO}_2 + \text{NADH}, \text{H}^+$$
 acide pyruvique acétyl-coA

• Cycle de Krebs : oxydation totale du carbone dans la matrice mitochondriale :

$$CH_3CO-S-CoA + 2H_2O + 3 NAD^+ + FAD + GDP + Pi$$

 $\rightarrow 2 CO_2 + HS-CoA + 3 NADH, H^+ + FADH_2 + GTP$

• Hélice de Lynen : oxydation d'un acide gras (CH₃(CH₂)_nCH₂CH₂COOH) dans la matrice mitochondriale :

$$\label{eq:ch3} \begin{split} & \text{CH}_3(\text{CH}_2)_{\text{n}}\text{CH}_2\text{CO-S-CoA} + \text{HS-CoA} + \text{NAD}^+ + \text{FAD} + \text{ATP} + \text{H}_2\text{O} \\ & \rightarrow \text{CH}_3\text{CO-S-CoA} + \text{CH}_3(\text{CH}_2)_{\text{n-2}}\text{CH}_2\text{CH}_2\text{CO-S-CoA} + \text{NADH}, \text{H}^+ \\ & + \text{FADH}_2 + \text{AMP} + \text{PPi} \end{split}$$

PPi: pyrophosphate.

Oxydation des coenzymes d'oxydoréduction

• Fermentation lactique : acide pyruvique accepteur final des protons et électrons :

$$CH_3COCOOH + NADH, H^+ \rightarrow CH_3CHOHCOOH + NAD^+$$
 acide pyruvique acide lactique

• Fermentation alcoolique : éthanal accepteur final des protons et électrons

$$CH_3COCOOH + NADH, H^+ \rightarrow CH_3CH_2OH + CO_2 + NAD^+$$
 acide pyruvique éthanol

• Chaîne respiratoire : O, accepteur final des protons et électrons

NADH,H
$$^+$$
 + $\frac{1}{2}$ O₂ + 3 ADP + 3 Pi \rightarrow NAD $^+$ + H₂O + 3 ATP
FADH₂ + $\frac{1}{2}$ O₂ + 2 ADP + 2 Pi \rightarrow FAD + H₂O + 2 ATP

10

1

Bilan des voies anaboliques : photosynthèse - chimiosynthèse

Réduction des coenzymes d'oxydoréduction :

• par conversion de l'énergie lumineuse ; phase photochimique de la photosynthèse; chaîne photosynthétique et photophosphorylation

$$\text{H}_2\text{O} + \text{NADP}^+ \rightarrow \frac{1}{2} \text{O}_2 + \text{NADPH}, \text{H}^+$$

• par oxydation de substrats minéraux : chimiosynthèse (exemple de Nitrobacter, bactérie nitratante)

$$NO_{2}^{-} + \frac{1}{2}O_{2} \rightarrow NO_{3}^{-}$$

 $NO_{2}^{-} + H_{2}O + NAD^{+} \rightarrow NO_{3}^{-} + NADH, H^{+}$

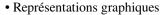
Réduction du CO, en matière organique par le cycle de Calvin : stroma des chloroplastes/cytoplasme de Nitrobacter :

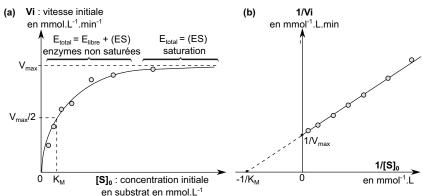
$$3 \text{ CO}_2 + 6 \text{ (NADPH,H}^+) + 9 \text{ ATP} \rightarrow \text{Gal3P (C3)} + 3 \text{ H}_2\text{O} + 6 \text{ NADP}^+ + 9 \text{ ADP} + 8 \text{ Pi}$$

Gal3P: glycéraldéhyde-3-phosphate (triose-phosphate); Pi: phosphate inorganique.

Équation de Michaelis-Menten 1

Modèle proposé par Michaelis et Menten


Il est fondé sur l'hypothèse de la formation d'un complexe transitoire enzyme-substrat (ES); transformation du ou des substrats en produits (P); libération de P et régénération de l'enzyme (E) :


$$E + S \leftrightarrow ES \rightarrow E + P$$

• Équation de Michaelis-Menten

$$V_{i} = \frac{V_{max} \cdot [S]_{0}}{\left(K_{m} + [S]_{0}\right)} \qquad \begin{vmatrix} V_{i} : \text{vitesse initiale de la réaction ;} \\ V_{max} : \text{vitesse maximale ;} \\ K_{M} : \text{constante de Michaelis (en mol.L}^{-1}) ;} \end{vmatrix}$$

[S]₀: concentration initiale en substrat.

Cinétique d'une enzyme michaélienne (unités retenues dans cet exemple expérimental : mmol, L et min)

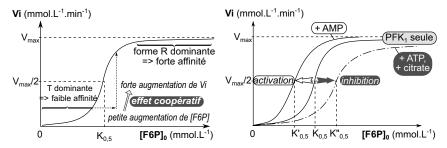
On mesure la vitesse initiale V_i d'une réaction pour des concentrations croissantes de substrat, à concentration enzymatique constante. (a) représentation $V_i = f([S]_0)$; (b) représentation en double inverse. Les cercles correspondent à des points expérimentaux; le tracé des deux courbes correspond à la modélisation selon l'équation de Michaelis-Menten.

Paramètres cinétiques d'une enzyme michaélienne :

- ullet vitesse maximale de réaction, V_{max} ;
- constante de Michaelis, K_{M} (en mol.L⁻¹), concentration en substrat pour laquelle la vitesse initiale est égale à la moitié de la V_{max} : $K_{M} = [S]_{0}$ pour $V_{i} = V_{max}/2$; K_{M} est l'inverse de l'affinité de l'enzyme pour son substrat.

Un tracé en double inverse $1/V_i = f(1/[S]_0)$ permet une détermination précise de ces paramètres grâce à une linéarisation.

1 Cinétique d'une enzyme allostérique


Cinétique d'un enzyme allostérique : courbe $V_i = f([S]_0)$ d'allure sigmoïde ; zone de forte pente : effet coopératif (plusieurs sites de fixation). Paramètres cinétiques :

- \bullet vitesse maximale de réaction, $\boldsymbol{V}_{\text{max}}$;
- $K_{0.5}$ (en mol.L⁻¹), concentration en substrat pour laquelle Vi = $V_{max}/2$;

12 [1] Biologie - Géologie - Biogéosciences

Effets des effecteurs allostériques :

- translation de la courbe vers des concentrations de substrats accrues : effet inhibiteur ;
- translation vers des concentrations plus faibles : effet activateur.

À gauche : cinétique d'une enzyme allostérique, exemple de la PFK, PFK, : phosphofructokinase 1 (enzyme de la glycolyse) ; F6P : son substrat (fructose-6-phosphate) À droite : effets des effecteurs allostériques sur la PFK,

SV-I Communications intercellulaires et intégration d'une fonction à l'organisme

Paramètres représentatifs de l'activité cardiague

• Volume d'éjection systolique (noté VS) : volume éjecté par un ventricule au cours d'une systole ; identique pour les deux ventricules.

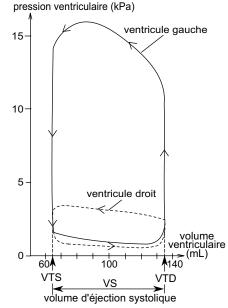
$$VS = V_{\text{télédiastolique}} - V_{\text{télésystolique}} - V_{\text{télésystolique}} : \text{volume d'un ventricule en fin de remplissage (diastole) ;} \\ V_{\text{télésystolique}} : \text{volume d'un ventricule à la fin de l'éjection (systole).}$$

Dans les conditions de repos, VS est d'environ 70 mL.

- **Fréquence cardiaque** (notée FC) : nombre de battements par unité de temps ; au repos, FC se situe fréquemment autour de 70 battements.min⁻¹.
- **Débit cardiaque** (noté DC) : volume de sang éjecté par chaque ventricule, dans la circulation artérielle par unité de temps.

$$DC = FC \times VS$$
 FC : fréquence cardiaque ;

VS : Volume d'éjection systolique.


Avec les valeurs moyennes indiquées plus haut au repos :

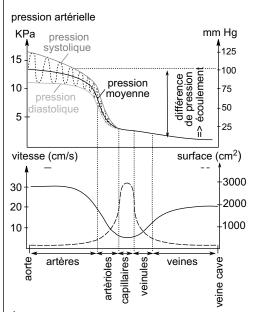
$$DC = 0.07 \times 70 \approx 5 \text{ L.min}^{-1}$$

Ainsi, au repos, chaque ventricule propulse par minute un volume de sang équivalent au volume sanguin de l'organisme.

• Travail cardiaque : proportionnel à la surface délimitée par le graphique représentant l'évolution de la pression en fonction du volume. Ainsi, pour un même débit, le ventricule gauche fournit un travail environ cinq à sept fois plus élevé que le ventricule droit.

VTD : volume télédiastolique VTS : volume télésystolique

Évolution de la pression et du volume de chaque ventricule au cours du cycle cardiaque


L'accroissement du débit cardiaque lors de l'activité physique est déterminé par un double contrôle :

- une augmentation de la fréquence cardiaque ;
- une augmentation du volume d'éjection systolique, qui traduit une contractilité accrue des ventricules lors de l'exercice.

14 [1] Biologie - Géologie - Biogéosciences

Pression artérielle différentielle et pression artérielle moyenne (PAM)

- Du fait de la contraction cyclique du cœur, variations de la pression sanguine dans l'aorte et les grosses artères entre deux valeurs extrêmes : les pressions systolique et diastolique (pressions mesurées chez le médecin). La différence est la pression différentielle. Celle-ci est moindre dans l'artère pulmonaire.
- La pression différentielle décroît au long du circuit lorsque le flux cesse d'être pulsatile et devient continu.
- La vitesse du sang dans les différents secteurs sanguins varie de manière inverse à la section cumulée des vaisseaux des différents secteurs.
- La pression artérielle moyenne est beaucoup plus forte dans l'aorte que dans l'artère pulmonaire (plus grande force de contraction du ventricule gauche).

Évolution des paramètres circulatoires dans la circulation systémique

• En chaque point du circuit, on peut calculer une pression artérielle moyenne, définie comme étant l'aire comprise entre la courbe PA = f(t) et l'axe des temps rapportée à l'intervalle de temps correspondant :

$$PAM = \frac{\int_{t_1}^{t_2} P \cdot dt}{t_2 - t_1}$$

• Elle peut se calculer plus facilement comme une moyenne des pressions systolique (PS) et diastolique (PD), pondérée pour les durées relatives de la systole (1/3 du cycle cardiaque) et de la diastole (2/3 du cycle cardiaque).

$$PAM = 2/3 PD + 1/3 PS$$

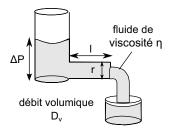
 $PAM = PD + 1/3 (PS - PD)$
 $= PD + 1/3 PAD$

PAM: pression artérielle moyenne;

PS: pression systolique; PD: pression diastolique;

PAD: pression artérielle différentielle.

Circulation du sang selon un gradient de pression longitudinal


- La circulation du sang est déterminée par la différence entre la pression sanguine à la sortie du ventricule, égale à la pression artérielle moyenne, et la pression de retour dans l'oreillette qui est très faible.
- La loi de Hagen-Poiseuille fournit une relation entre différence de pression et débit volumique d'un fluide.

Elle décrit **l'écoulement laminaire** (c'est-à-dire à filets de liquide parallèles) d'un liquide de viscosité constante η dans un conduit cylindrique. Elle peut être vérifiée expérimentalement pour des canalisations de faible rayon (montage de la figure). La hauteur du liquide dans le récipient est à l'origine d'une différence de pression (ΔP) qui lui permet de s'écouler avec un débit volumique D_{v} .

Ainsi, si tous les paramètres du circuit $(\eta, 1 \text{ et r})$ restent constants, la variation de pression est proportionnelle au débit volumique : $\Delta P = R \times D_v$.

Le coefficient de proportionnalité R est la résistance hydraulique du circuit : elle résulte de la friction du liquide sur la paroi de la canalisation, qui s'oppose à l'écoulement.

Montage expérimental

Loi de Hagen - Poiseuille

$$\Delta P = \frac{8. \, \eta \cdot I}{\pi \cdot r^4} \, D_v$$

16

2 Pression artérielle et résistance à l'écoulement

• La loi de Hagen-Poiseuille peut être appliquée à la circulation sanguine avec certaines réserves : les écoulements sanguins sont rarement laminaires. Son application conduit à la relation :

$$PAM = DC \times RPT$$

$$soit$$

$$PAM = DC \times RPT$$

$$= VS \times FC \times RPT$$

- RPT : résistance globale de la circulation systémique, appelée résistance périphérique totale ;
- DC : débit cardiaque parcourant le circuit ;
- = $VS \times FC \times RPT \mid \bullet FC :$ fréquence cardiaque ;
 - VS : volume d'éjection systolique.
- La loi de Hagen-Poiseuille fournit une expression de la résistance.

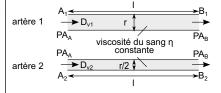
$$R = \frac{8 \cdot \eta \cdot l}{\pi \cdot r^4} = \frac{k}{r^4}$$

Elle fait apparaître une relation forte entre résistance à l'écoulement du sang et rayon r du vaisseau, la première étant inversement proportionnelle à la puissance quatrième du second.

 \bullet D'après la loi de Hagen-Poiseuille le débit sanguin local D_v au travers d'un vaisseau est égal au rapport de la diminution de pression ΔP aux bornes du circuit, sur la résistance R du vaisseau à l'écoulement du sang.

Sur l'exemple de la figure, pour une longueur 1 donnée de circuit artériel et un gradient de pression sanguine constant, la résistance à l'écoulement multipliée par 16 (2⁴) et le débit local est divisé par 16 lorsque le rayon de l'artère est divisé par 2.

Artère 1 : résistance à l'écoulement R_1 et débit sanguin local D_{y_1}


$$R_1 = \frac{8 \cdot \eta \cdot l}{\pi \cdot r^4}$$
; $D_{V1} = \frac{\Delta P}{R_1}$

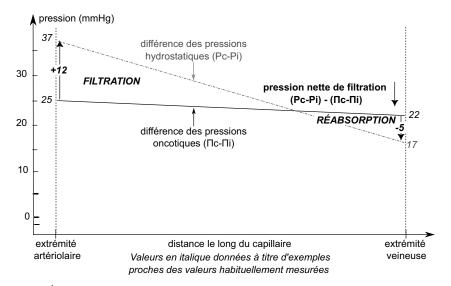
Artère 2 : résistance à l'écoulement R_2 et débit sanguin local D_{ν^2}

$$R_{2} = \frac{8 \cdot \eta \cdot 1}{\pi \cdot \left(\frac{r}{2}\right)^{4}} = 16 R_{1}$$

$$D_{V2} = \frac{\Delta P}{R_{2}} = \frac{\Delta P}{16 R_{1}} = \frac{D_{V1}}{16}$$

Application de la loi de Poiseuille à deux artères de diamètre différent

• Du fait de son faible diamètre, un capillaire offre une résistance forte. Mais du fait de leur très grand nombre et de leur disposition en parallèle, leur réseau offre une moindre résistance que le réseau artériolaire qui les dessert. La chute de pression sanguine s'observe surtout au niveau des artérioles.


Échanges capillaires par filtration réabsorption

Au niveau d'un capillaire, le liquide est soumis à deux types de pressions :

- des **pressions hydrostatiques** (notées P), exercées par les fluides situés de part et d'autre de la paroi capillaire (sang et liquide interstitiel) dont la différence (Pc Pi) tend à favoriser la filtration du plasma vers le liquide interstitiel;
- des **pressions oncotiques** (notées π) correspondant aux effets osmotiques des protéines qui ne peuvent pas diffuser librement de part et d'autre de la paroi capillaire : plus abondantes dans le sang, elles favorisent la réabsorption des liquides vers le capillaire.

Le mouvement net de liquide est déterminé par la **pression nette de filtration** égale à :

Pression nette de filtration (en un point du capillaire) = $(Pc - Pi) - (\Pi c - \Pi i)$

Évolution des pressions hydrostatiques et oncotiques le long d'un capillaire

18 [1] Biologie - Géologie - Biogéosciences

Cette pression nette est maximale à l'extrémité artériolaire du capillaire où elle est positive : les forces de filtration hydrostatiques l'emportent sur les forces de réabsorption oncotiques : il y a **filtration** du plasma vers le liquide interstitiel.

Cette pression nette est minimale à l'extrémité veineuse où elle devient négative : les forces de réabsorption oncotiques l'emportent sur les forces de filtration hydrostatiques : il y a **réabsorption** du liquide interstitiel vers le plasma.

L'excès de liquide filtré est drainé par la circulation lymphatique et fait ensuite retour au sang.

Le flux par unité de surface entre les deux compartiments peut donc être exprimé sous la forme :

$$J = Lp \cdot ((Pc - Pi) - (\Pi c - \Pi i))$$

Lp : conductivité hydraulique qui prend en compte la **perméabilité** du capillaire à l'eau.

SV-J Populations et écosystèmes

1 Les paramètres démographiques d'une population

• Paramètres démographiques d'une population

nn : nombre d'individus issus de la reproduction (natalité) ;

ni : nombre d'individus issus de l'immigration ;

nd : nombre d'individus morts ; ne : nombre d'individus émigrés ; N: effectif total;

nn + ni > nd + ne : croissance de l'effectif :

nn + ni < nd + ne : décroissance de

l'effectif.