Table des matières

Ava	int-propos	VIII				
Uni	Unités du système international					
Not	tations principales	XII				
1.	L'échange d'énergie dans les systèmes physiques et technologiques	1				
CHAPIT	RE 1-1 Énergie et systèmes	3				
1.1	L'énergie et la puissance	3				
	I.1.1 Énergie et systèmes	3				
	1.1.2 Transfert et stockage d'énergie	4				
	1.1.3 Énergie et puissance électrique	8				
1.2	5 1	15				
	1.2.1 Translation rectiligne	16 21				
	1.2.3 Phases d'un mouvement	26				
	1.2.4 Charge entraînée ou résistante, charge entraînante ou motrice	27				
1.3	Situations problèmes en électromécanique	28				
	1.3.1 Action mécanique exercée par une charge en mécanique	28				
	1.3.2 Couple et inertie d'une charge ramenés à l'arbre moteur	28				
	1.3.3 Mécanismes et machines simples	38				
	1.3.5 Mouvements de fluides	41 47				
1.4		57				
•••	1.4.1 La chaleur	58				
	1.4.2 Classes et régimes thermiques des moteurs	62				
	1.4.3 Modélisation thermique du moteur	64				
CHAPIT	RE 1-2 Régimes transitoires. Systèmes bouclés	67				
1.5	Transmittance et impédance de Laplace	68				
	1.5.1 La transformation de Laplace					
	d'une fonction du temps et ses propriétés	68				
	1.5.2 Transmittance de Laplace – Impédance de Laplace	71				
1.6	•					
	Les bases de l'automatique linéaire	76				

	1.6.1	Exercice corrigé 1-31 : Régulation thermique	76
	1.6.2	Fonctions de transfert	80
	1.6.3	Modélisation des systèmes	80
	1.6.4 1.6.5	Stabilité absolue des systèmes bouclés Identification expérimentale	90 90
	1.0.)	identification experimentale	90
2.	Éne	rgie électromagnétique	93
CHAPITR	RE 2-1	Champs électromagnétiques et matériaux	95
2.1	Notio	n physique de champ	95
	2.1.1 2.1.2	Qu'est-ce qu'un champ? Le cas de l'électromagnétisme	95 99
2.2			
2.2		ps et matière. Matériaux	103
	2.2.1	Excitation et induction magnétique. Matériau magnétique	103
	2.2.2	Excitation et induction électrique. Matériau diélectrique	108 110
	2.2.4	Matériaux diélectriques. Champ disruptif	111
	2.2.5	Tableau de comparaison entre électrostatique et magnétisme	112
CHAPITR	E 2-2	es lois physiques de l'électromagnétisme	113
2.3	Grand	leurs et lois physiques intégrales et locales	114
	2.3.1	Comment en est-on venu à s'intéresser au flux	
		et à la circulation d'un vecteur champ ?	114
	2.3.2	Topologie des contours et des surfaces, circulation et flux	115
	2.3.3	Un exemple simple, les lois d'Ohm locale et intégrale	117
	2.3.4 2.3.5	Lois des flux des inductions (régimes statiques) Loi de la circulation des champs d'excitation	119
	2.3.)	(régimes statiques)	123
2.4	ć		123
2.4		ie stockée dans un champ électrostatique ou étostatique	130
	_	•	130
	2.4.1	Exercice corrigé 2-13 : Densité d'énergie (utilisable) stockée dans un espace champ électrique	131
	242	Densité d'énergie élémentaire en électrostatique	132
		Densité d'énergie élémentaire en magnétostatique	134
2.5		ts magnétiques en magnétostatique	137
	2.5.1	Étude qualitative d'une bobine d'induction.	120
	2.5.2	Circuit magnétique parfait	138 142
	2.5.3	L'inductance propre, de la physique à l'électrotechnique	145
	2.5.4	Relation flux totaux-courants	153
2.6	-	odifications des lois intégrales de circulation	
2.0			155
	Ma	tériel protégé par droit d'auteur	* / /

	2.6.1	L'induction électromagnétique	156
	2.6.2	La loi de Faraday et la loi de Lenz	160
	2.6.3	La répartition d'un courant dans un conducteur	
		en régime variable	162
	2.6.4	Le théorème d'Ampère en régime variable	163
	2.6.5	Pour aller plus loin : La propagation des champs électriques	
		et magnétiques	164
3.	Lac	listribution de l'énergie électrique	169
CHAPIT	RE 3-1	Régimes alternatifs sinusoïdaux	171
3.1	Puiss	ances en régime alternatif sinusoïdal	171
	3.1.1	Les grandeurs électriques intensité et tension	
	J.1.1	en régime variable	172
	3.1.2	Grandeurs instantanées sinusoïdales, vocabulaire,	
		étude mathématique	173
	3.1.3	Le comportement des charges linéaires en régime	
		alternatif sinusoïdal. Conventions pour u(t) et i(t)	177
	3.1.4	Puissances en régime sinusoïdal	178
	3.1.5	Bilan des relations utiles	184
	3.1.6	Mesure de la puissance active : le wattmètre	185
	3.1./	et d'un circuit RLC série	186
7.3	ر کے سام		
3.2		gime alternatif sinusoïdal triphasé	189
		Lignes triphasées	190
	3.2.2	Couplages sur la ligne triphasée de récepteurs	100
	3.2.3	ou générateurs identiques	190 193
	3.2.4	Schéma équivalent monophasé	196
	3.2.5	Circuits triphasés déséquilibrés	197
CHAPIT	RE 3-2	Circuits magnétiques en régime dynamique.	
		Fransformateurs	203
3.3	Bobir	ne d'induction en régime dynamique	203
	3.3.1	Exercice corrigé 3-12 : Évolution de l'énergie dans	
	2.2.2	une bobine en régime transitoire	203
	3.3.2	Bobine saturable et hystérétique en régime variable	206
	3.3.3	Simulation d'une bobine en régime variable	208
3.4	Transi	formateurs	212
	3.4.1	La structure de base d'un transformateur à deux	
		enroulements et la réalité technologique	212
	3.4.2	Le transformateur en régime sinusoïdal et en monophasé	218
	3.4.3	Autotransformateur	228
	Ma.	tériel protégé par droit d'auteur	

		Le transformateur en régime alternatif sinusoïdal triphasé	229 239	
CHAPITI	RE 3-3	Fechnologie de la distribution	249	
3.5	Prote	ction des biens	250	
	3.5.1	Appareillage électrique. Définition et symbolisation	250	
3.6	Prote	ction des personnes physiques	261	
		Les dangers du courant électrique	261 264	
Bibliographie				
1			271	

Sommaire de l'autre volume d'électrotechnique

Électronique de puissance conversion électromécanique régulation et asservissement

1. Électronique de puissance

CHAPITRE 1-1 La modulation de l'énergie électrique par l'électronique de puissance

- 1.1 Les principes de base de l'électronique de puissance
- 1.2 Les composants électroniques principaux
- 1.3 La fonction modulation des signaux électriques continus
- 1.4 La fonction redressement
- 1.5 L'analyse harmonique des signaux
- 1.6 La fonction onduleur
- 1.7 Une application de l'électronique de puissance :
 la conversion d'énergie photovoltaïque

2. La conversion électromécanique

- CHAPITRE 2-1 Caractères généraux des convertisseurs électromécaniques électromagnétiques
 - 2.1 Énergie électromagnétique et électromécanique
 - 2.2 Étude technologique des machines électriques
 - 2.3 Puissances et couples

CHAPITRE 2-2 Application aux moteurs à courant continu

- 2.4 Les machines à enroulements pseudo-stationnaires et la commutation électromécanique
- 2.5 Les moteurs brushless et la commutation électronique
- 2.6 La commande des moteurs à courant continu

CHAPITRE 2-3 Les convertisseurs synchrones et leur commande

- 2.7 Les alternateurs et moteurs synchrones triphasés
- 2.8 Les moteurs pas à pas

CHAPITRE 2-4 La machine asynchrone triphasée et sa commande

- 2.9 La machine asynchrone triphasée. Étude physique
- 2.10 Le moteur asynchrone triphasé. Techniques de commande

3. Électrotechnique et automatique

CHAPITRE 3 Régulation et asservissement en électromécanique

- 3.1 Le problème de base 1. Asservissement ou régulation de vitesse
- 3.2 Le problème de base 2. Asservissement de position d'un groupe tournant

Matériel protégé par droit d'auteur