

LE PHOSPHORE EN SYNTHÈSE ORGANIQUE

 Classification périodique des éléments: version simplifiée aux éléments couramment utilisés en synthèse organique

- Phosphore: Isolé en 1669
- Sources: Phosphates (Maroc, Chine, Afrique du Sud, USA)
- Un des six éléments essentiel à la vie (C, H, N, O, P, S)

QUELQUES COMPOSÉS ORGANOPHOSPHORÉS BIOACTIFS

Propriétés

Configuration électronique:

P: 1s2 2s² 2p⁶ 3s² 3p³ 3d⁰

5 électrons périphérique

- RMN possible du noyau du phosphore 31
 - ³¹P abondance naturelle = 100 % $^{31}P (spin = \frac{1}{2}) \rightarrow RMN ^{31}P$

Valence & VSEPR:

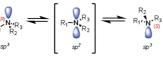
pyramide trigonale

tétraédrique

tétraédrique trigonale

bipvramide

octaédrique



PR₃, PCl₃, PBr₃

Phosphonium

POCI₃, PCI₅

Chiralité:

- **× Amines**: pas de chiralité
- ✓ Phosphines: chiralité

PROPRIÉTÉS

Forces des liaisons avec le phosphore comparaison avec le carbone

P-Cl	69 kcal/mol		
P-C	123 kcal/mol		
P-O	143 kcal/mol		
P-H	71 kcal/mol		
P-N	147 kcal/mol		

C-Cl 95 kcal/mol C-C 145 kcal/mol C-O 257 kcal/mol C-H 81 kcal/mol C-N 180 kcal/mol

- Force motrice des réactions avec le phosphore = formation d'une liaison forte P-O (P=O = 197 kcal/mol)
- Électronégativité selon Pauling

C 2.35	N 3.1	3.5	F 4.0
Si	P 2.1	S 2.5	CI 2.8

Longueur des liaisons

Polarisation : électronégativité très proche

1 cal = 4.1868 J

NOMENCLATURE

Dialkylphosphites

forme réactive

- Trialkylphosphites
 - : P-OF RO

Phosphonates

Phosphates

Acides phosphoniques

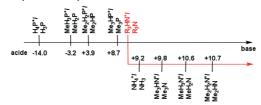
pKa 3 unités inférieur à CO₂H

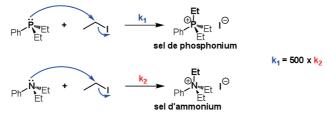
Phosphines

Phosphoniums

Ylures

Phosphoranes

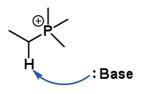

R = alkyle ou aryle



GÉNÉRALITÉS

Basicité: phosphines vs. amines – Étude de la protonation Phosphines plus acide qu'amines

Nucléophilie: Phosphines plus nucléophile qu'amines


RÉACTIVITÉ DES COMPOSÉS ORGANOPHOSPHORÉS

Réactivité vis-à-vis des bases

- ➤ Réaction(s) de Wittig
- ▶ Réactivité vis-à-vis des électrophiles

- ➤ Réaction de Mitsunobu
- ➤ Réaction de Corey-Fuchs

Réactivité vis-à-vis des nucléophiles

X = Br, Cl

➤ Halogénation des alcools

Réactivité des Composés Organophosphorés