Questions

Configurations électroniques / effets électroniques

Question	. 1	Ena	206
· mesiimi			10:00

Parmi	les affirma	tions suivantes	cocher la	ou les pi	ropositions	exactes.

- A) Deux isotopes diffèrent par leurs nombres de neutrons
- B) La configuration électronique de l'anion ¹⁹₉F⁻ est 1s²2s²2p⁵
- C) La configuration électronique du cation $^{59}_{27}\text{Co}^{2+}$ est $1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^63\text{d}^7(4\text{s}^0)$
- D) Selon la théorie VSEPR, le cation NO₂⁺ est de géométrie triangulaire plane, en AX₂E₁
- E) Selon la théorie VSEPR, le carbanion C(CH₃)₃ est de géométrie triangulaire plane, en AX₃E₀

Proposition	A)	B)	C)	D)	E)
Réponse					

Ouestion 2. Enoncé

Parmi les affirmations suivantes, cocher la ou les propositions exactes. Données : ¹²₆C (Carbone), ²³₁₁Na (Sodium), ⁵⁹₂₇Co (Cobalt)

- A) La configuration électronique de l'ion sodium ²³₁₁Na⁺ est 1s²2s²2p⁶3s¹
- B) La configuration électronique du cation $^{59}_{27}\text{Co}^{3+}$ est $1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^63\text{d}^7(4\text{s}^0)$
- C) Selon la théorie VSEPR, le cyanure d'hydrogène (HCN) est linéaire
- D) Selon la théorie VSEPR, le carbanion C(CH₃)₃ est de géométrie tétraédrique
- E) Selon la théorie VSEPR, le dioxyde de carbone (CO₂) est une molécule coudée

Proposition	A)	B)	C)	D)	E)
Réponse					

Chapitre 1. Configurations électroniques / effets électroniques

Question 3. Enoncé

On s'intéresse au chlorure de magnésium, de formule MgCl₂, parfois prescrit en cas de fatigue.

Données: ²⁴₁₂Mg (Magnésium), ³⁵₁₇Cl (Chlore)

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) L'atome de magnésium possède 2 électrons célibataires sur sa couche L
- B) La configuration électronique du chlore Cl⁽⁰⁾ est 1s² 2s² 2p⁶ 3s² 3p⁵
- C) Selon la théorie VSEPR, le chlorure de magnésium est de géométrie triangulaire plan
- D) Le magnésium appartient à la famille des alcalino-terreux
- E) MgCl₂ présente la même géométrie que le dioxyde de carbone (CO₂)

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 4. Enoncé

On s'intéresse au trichlorure de bore de formule BCl₃.

Données: ¹⁰₅B (Bore), ³⁵₁₇Cl (Chlore)

- A) L'atome de bore possède 2 électrons célibataires sur sa couche L
- B) La configuration électronique de l'atome de chlore $Cl^{(0)}$ est $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^4$
- C) Selon la théorie VSEPR, le trichlorure de bore est triangulaire plan
- D) Le trichlorure de bore est un acide de Lewis
- E) Dans BCl₃, l'atome de bore (atome central) est hybridé sp²

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 5. Enoncé

Configurations électroniques (e-). La cytochrome c oxydase, enzyme terminale de la chaîne respiratoire, contient en son cœur un atome de fer(II). La cobalamine (vitamine B_{12}) contient, quant à elle, un atome de cobalt(III).

Données : 56₂₆Fe, 59₂₇Co

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) La configuration e- du $^{59}_{27}$ Co⁽⁰⁾ est : 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷
- B) La configuration e- du $^{59}_{27}$ Co³⁺ est : 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁷ (4s⁶)
- C) La configuration e- du ${}^{56}_{26}$ Fe ${}^{(0)}$ est : 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ (4s⁶)
- D) La configuration e- du ${}^{56}{}_{26}\text{Fe}^{2+}$ est : 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ (4s⁰)
- E) Pour n = 3 (nombre quantique principal), la couche M peut comporter au maximum 16 électrons

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 6. Enoncé

Théorie VSEPR.

Données: ¹₁H, ¹⁰₅B, ¹²₆C, ¹⁴₇N, ¹⁶₈O, ³⁵₁₇Cl

- A) CO₂ et HCN sont en AX₂E₀ (géométrie linéaire)
- B) CO₂ et H₂O sont en AX₂E₂ (géométrie tétraédrique)
- C) COCl₂ et NH₄⁺ sont en AX₄E₀ (géométrie tétraédrique)
- D) COCl₂ et BCl₃ sont en AX₃E₀ (géométrie triangulaire plane)
- E) NH₃ et H₃O⁺ sont en AX₃E₁ (géométrie tétraédrique)

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 7. Enoncé

Le métabolisme des protéines conduit à la formation de guanidine qui peut se retrouver dans les urines sous forme protonée (sous forme d'ion guanidinium). On s'intéresse à la représentation de Lewis de l'ion guanidinium (représentations 1 à 4 ci-dessous):

- A) La représentation 1 est exacte selon Lewis
- B) Les représentations 2 et 3 sont exactes selon Lewis
- C) La représentation 4 est exacte selon Lewis
- D) L'atome de carbone central de la guanidine est hybridé sp²
- E) La guanidine est une base de Lewis

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 8. Enoncé

On s'intéresse à la représentation de Lewis de l'anion carbonate CO₃²⁻ (représentations 1 à 4 ci-dessous).

Représentation 1

Représentation 2

Représentation 3

Représentation 4

Données: 126C (Carbone), 168O (Oxygène)

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) Selon la théorie VSEPR, l'anion carbonate CO₃²⁻ est de géométrie triangulaire plan
- B) La représentation 1 de l'anion carbonate CO₃²⁻ est exacte selon Lewis
- C) Les représentations 2 et 3 de l'anion carbonate CO₃²⁻ sont exactes selon Lewis
- D) La représentation 4 de l'anion carbonate CO₃²⁻ est fausse selon Lewis
- E) Dans CO₃²-, l'atome de carbone est hybridé sp

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 9. Enoncé

L'ion hypobromite BrO est utilisé pour ses propriétés antiseptiques et parasiticides. On s'intéresse à la représentation de Lewis de l'anion BrO (représentations 1 à 3 ci-dessous) :

Représentation 1

Représentation 2

Représentation 3

Données : $^{16}{}_{8}$ O (Oxygène), $^{79}{}_{35}$ Br (Brome)

- A) L'atome de Br est de valence 1
- B) La représentation 1 de l'anion BrO est exacte selon Lewis
- C) La représentation 2 de l'anion BrO est fausse selon Lewis
- D) La représentation 3 de l'anion BrO est exacte selon Lewis
- E) Le brome possède 7 e- sur sa couche externe

Proposition	A)	B)	C)	D)	E)
Réponse					

Chapitre 1. Configurations électroniques / effets électroniques

Question 10. Enoncé

On s'intéresse ci-après aux représentations de Lewis du protoxyde d'azote (N₂O, un gaz utilisé en anesthésie) :

⊕ N=N=O

⊝_ ⊕ ⊕ IN−N≡OI (N=N=O)

<u>__</u>⊕ N=N-<u>O</u>|

Représentation 1

Représentation 2

Représentation 3

Représentation 4

Données: 147N, 168O

Parmi les affirmations suivantes, cocher la ou les propositions exactes.

- A) La représentation 1 est exacte selon Lewis
- B) La représentation 2 est exacte selon Lewis
- C) La représentation 3 est exacte selon Lewis
- D) La représentation 4 est exacte selon Lewis
- E) La représentation 4 respecte la règle de l'Octet

Proposition	A)	B)	C)	D)	E)
Réponse					

Question 11. Enoncé

L'halauxifen-méthyl est un herbicide avec des propriétés d'hormone de croissance. Le formotérol est utilisé en tant que bronchodilatateur. Leurs structures sont représentées ci-dessous :

- A) L'halauxifen-méthyl possède une fonction ester méthylique
- B) Le groupement -OCH₃ (étheroxyde) présente un effet mésomère électrodonneur (+M)
- C) Dans le formotérol représenté ci-dessus, tous les atomes de carbone asymétriques sont de configuration absolue *Rectus* (*R*)
- D) Le formotérol possède une fonction amide primaire qui présente un effet mésomère électroattracteur (-M)
- E) Dans l'halauxifen-méthyl, les atomes de fluor (-F) et de chlore (-Cl) présentent un effet mésomère électrodonneur (+M) faible

Proposition	A)	B)	C)	D)	E)
Réponse					