Table des matières

Introduction et mode d'emploi9
Ch. 1 : La notion d'équation
I. Deux manières de définir un ensemble
II. Notion d'équation, injectivité et surjectivité, application réciproque18
A. Equations18
B. Injection, surjection, bijection, application réciproque
C. Deux problèmes importants concernant équations et fonctions
réciproques23
III. Le modèle général de l'équation linéaire : cinq exemples de référence32
A. Le modèle général de l'équation linéaire32
B. Cinq exemples de référence34
IV. Définir un ensemble géométrique par des équations39
A. Le cas général39
B. Le cas des équations linéaires41
Ch. 2: Compléments sur les nombres complexes
I. Un peu d'histoire en guise d'introduction : nombres complexes,
équations, polynômes46
A. Des exercices inspirés de l'histoire
B. Indications pour la solution des exercices50
C. Le "miracle" des calculs des mathématiciens italiens n'en est pas un
II. Différentes définitions et différentes écritures des nombres complexes
A. Quelques définitions des nombres complexes
B. Les différents registres d'écriture des nombres complexes,
nombres complexes de module 1 et racines n-èmes de l'unité
III. Les nombres complexes comme outils en géométrie ou en algèbre
A. Des rappels sur les nombres complexes et la géométrie
B. Des types de problèmes de géométrie où les complexes sont utiles :
alignement, triangle, configurations, lieux, études liées à des homographies77
C. Utilisation de la géométrie des complexes pour étudier des
questions d'algèbre des polynômes à coefficients complexes

Ch. 3 : Le nombre π entre algèbre, géométrie et analyse91
I. La limite en 0 de $\frac{\sin x}{x}$ en classe de première : longueur d'un arc
et convexité dans le plan91
II. La limite en 0 de $\frac{\sin x}{x}$ en classe de première : l'aire du secteur
de cercle et la division des arcs93
III. Pourquoi le périmètre du cercle de rayon I est-il le double de son aire ?
Le même nombre π ?96
IV. La relation L = 2S : une preuve presque géométrique
V. Le raisonnement par "exhaustion" d'Archimède pour montrer la relation $L=2S\ldots99$
VI. Le point de vue du XX ^e siècle102
A. L'introduction des fonctions trigonométriques par les séries entières102
B. L'introduction des fonctions trigonométriques par la fonction arctangente,
primitive nulle en 0 de la fonction $x \rightarrow \frac{1}{1+x^2}$
VII. Un autre point de vue sur le nombre π : la période
d'un homomorphisme continu de R dans \mathbb{T}
A. Conditions nécessaires vérifiées par un tel homomorphisme
B. Comment montrer l'existence d'un homomorphisme continu de $\mathbb R$ dans $\mathbb T$? 107
C. Attention : il existe beaucoup d'homomorphismes de groupe de $\mathbb R$ dans $\mathbb T$,
dont le noyau est ℤ, mais non continus
VIII. Calculer des valeurs approchées de π
Ch. 4 : La convexité
I. Fonctions et ensembles convexes : définitions et propriétés fondamentales
A. Fonctions convexes sur un intervalle réel
B. Ensembles convexes de la droite, du plan, de l'espace
C. Relations entre ensembles convexes et fonctions convexes
II. Fonctions et ensembles convexes : quelques indications sur les démonstrations 125
III. Quelques grandes idées sur la convexité et son utilisation
A. Quelques idées importantes
B. Quatre techniques de base pour utiliser la convexité
IV. Quelques exercices sur les fonctions convexes
V. Longueurs, périmètres et convexité
A. Définition et existence
B. La formule de Cauchy pour le périmètre d'un corps convexe
Contenu protégé par copyright

VI. Aires et convexité	148
A. Aire d'un corps convexe	148
B. Le calcul de l'aire d'un corps convexe	149
C. L'aire des polygones convexes inscrits ou circonscrits à un cercle :	
des inégalités	150
D. La formule de Steiner-Minkowski sur l'aire de $C + B^*(O, \varepsilon)$	151
E. Le problème du sandwich	153
F. Convexes et réseaux plans	156
VII. Quelques résultats supplémentaires : l'inégalité isopérimétrique,	
le théorème de Brunn-Minkowski	158
A. La concavité de la racine carrée de l'aire : le théorème de	
Brunn-Minkowski	158
B. L'inégalité isopérimétrique	162
VIII. Où se cache la convexité dans les programmes des lycées et collèges ?	166
A. Convexité et axiomes de base de la géométrie au collège	167
B. Les polygones convexes au collège et au lycée	167
C. La convexité du cercle au collège et au lycée	167
D. La longueur de l'arc de cercle et les fonctions trigonométriques en première	168
E. Recherche du maximum de fonctions linéaires sous des	
contraintes linéaires, en terminale	168
F. Calcul de volumes en terminale	168
Ch. 5 : Aires, intégrales et primitives, un cheminement de la géométrie	
à l'analyse, inspiré de l'histoire	171
I. Cheminement historique	172
A. Galilée et la chute des corps	172
n No. 2	
B. La spirale d'Archimède et la somme $\sum_{i} k^2$	173
C. Cavalieri, Fermat et l'aire "sous les fonctions puissances"	174
D. L'hyperbole, Grégoire de Saint-Vincent et le logarithme	
II. Aire, intégrale et primitive : quels rapports ?	
III. Sens de la relation primitive-intégrale en terminale scientifique;	
le problème de l'additivité et les indivisibles de Cavalieri	180
A. Primitives et intégrales en terminale	
B. Quelques activités autour de la méthode des indivisibles Contenu protégé par copyright	

Ch. 6 : Le problème des primitives des fonctions continues :
une solution directe
I. Primitives d'une fonction, propriétés ; primitive entre deux points
II. Approximation globale d'une fonction continue par des fonctions simples 190
III. Le théorème fondamental sur les primitives
Ch. 7 : Les grandeurs géométriques, physiques et leur formalisation
et calcul par les procédures "intégrale" et "dérivée-primitive" 197
I. La notion de grandeur
A. Qu'est-ce qu'une grandeur ?
B. Mesurer une grandeur
C. Caractériser une grandeur par une relation numérique ponctuelle ou locale 198
II. La procédure "dérivée-primitive"
A. En quoi consiste cette procédure ?
B. La procédure dérivée-primitive et le calcul des surfaces et des volumes205
III. La procédure intégrale
A. Quel est le problème ?
B. La procédure intégrale
C. Une classe de fonctions Darboux-intégrables
D. Un exemple d'application à un calcul d'aire en coordonnées polaires217
E. On retrouve l'existence des primitives des fonctions continues
F. Conclusion sur la modélisation par l'intégrale
Ch. 8 : Valeur moyenne d'une fonction, valeurs moyennes
d'une grandeur223
I. Valeur moyenne d'une fonction
A. Passage d'un échantillonage discret à une version continue
B. Moyenne comme constante déterminant la même aire
que le graphe de f sur [a, b]
C. Vision barycentrique de la moyenne : on pondère les valeurs
D. Moyenne comme constante minimisant l'erreur quadratique
II. Moyenne d'une fonction par rapport à une fonction densité
III. Valeur moyenne d'une grandeur : problèmes de modélisation

Contenu protégé par copyright

des matières	7
Ch. 9 : Aire, volume, mesure de Lebesgue des compacts	233
I. L'équidécomposabilité de polygones de même aire	
II. Les compacts quarrables du plan	
A. Objectifs et contraintes	
B. Les définitions de base	
C. Les propriétés de l'aire des compacts quarrables	
D. L'aire du disque	
E. L'aire du parallélélogramme comme déterminant	
III. Les compacts cubables de l'espace	
A. Définitions et résultats	
B. Le volume du tétraèdre	
C. Le volume du tétraèdre dans les programmes de première de 1950	
D. Le volume du parallélépipède comme déterminant	
IV. La mesure de Lebesgue d'un compact du plan	
A. La mesure des compacts du plan	
B. Invariance de la mesure de Lebesgue par les isométries	
C. Mesure des sous-graphes et intégrales des fonctions continues	
D. L'existence de compacts du plan non quarrables	
E. L'effet des bijections affines sur la mesure des compacts	
F. Rapports entre les mesures des compacts dans des plans	
différents de l'espace	255
V. La mesure de Lebesgue d'un compact de l'espace	255
A. Mesure d'un cylindre droit à base dans un plan de coordonnées	256
B. Invariance de la mesure des compacts par les isométries	256
C. L'effet des bijections affines sur la mesure des compacts de l'espace	257
D. Cubabilité et mesure de Lebesgue	258
Appendice au ch. 9 : la non-équidécomposabilité du cube et du	
tétraèdre régulier de même volume	261
Annexe 1 : Les entiers et la récurrence, ensembles finis et infinis,	
problèmes de dénombrement	265
I. N et le raisonnement par récurrence	
A. La récurrence	
B. Existence et unicité des suites définies par récurrence	

II. Ensembles finis et infinis
A. Ensembles finis, cardinal ou nombre d'éléments d'un ensemble fini273
B. Ensembles infinis
C. Ensembles dénombrables
III. L'analyse combinatoire
A. Des résultats généraux de base
B. Problèmes de modélisation
C. Retour de la modélisation vers les mathématiques
Annexe 2 : Quelques exemples d'intervention du numérique en géométrie,
et autres remarques sur la géométrie du collège299
I. Inégalité triangulaire et intersection de deux cercles : un piège au collège 299
II. Réciproques de quelques théorèmes caractérisant une propriété
géométrique par une égalité numérique301
III. Mesures des angles du plan
IV. Les oubliés du collège
Annexe 3: Le point sur les nombres réels
I. Une ébauche de construction, les propriétés de ℝ
A. Différentes approches possibles pour une construction
B. Une ébauche de construction, par les développements décimaux illimités311
C. Les propriétés essentielles de R
II. Nombres rationnels, irrationnels, transcendants
A. La non-dénombrabilité de R
B. Les nombres irrationnels
C. Nombres algébriques, nombres transcendants
III. Nombres constructibles