Analyse pour l'agrégation

Hervé Queffélec, Claude Zuily

Analyse pour l'agrégation

Cours et exercices corrigés

5^e édition

DUNOD

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

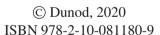
Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photoco-

pie à usage collectif sans autorisation des ayants droit. Or, cette pratique s'est généralisée dans les établissements

d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour

les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd'hui menacée. Nous rappelons donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l'auteur, de son éditeur ou du Centre français d'exploitation du

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).



DANGER

LE PHOTOCOPILLAGE TUE LE LIVRE

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

Table des matières

Avant-	propos X	V
Chapi	tre I – Notion de plus petite et de plus grande limite	1
I.	Introduction	1
II.	Théorèmes et définitions	1
1.	Limite supérieure et limite inférieure	1
2.	Passage à la $\overline{\lim}$ ou $\underline{\lim}$ dans une inégalité	3
III.	Applications	5
1.	Suites sous-additives	5
2.	Un théorème taubérien	6
IV.	Enoncés des exercices	8
V.	Indications	9
VI.	Solutions des exercices	9
Chapi	tre II – Compléments sur les séries et les séries de fonctions	.5
I.	Formule d'Abel et applications	5
1.	Formule d'Abel. Exemples	5
2.	Prolongement de la fonction ζ au demi plan Re $s>0$ privé de $\{1\}$	20
3.	La fonction θ	20
4.	Application aux nombres premiers	21
		23
1.	Abcisses de convergence et de convergence absolue	23
2.	Holomorphie	25
3.	Produit de Dirichlet	27
III.	Retour sur la fonction ζ	28
1.	Prolongement holomorphe de la fonction ζ à $\mathbb{C}\setminus\{1\}$	28
2.	Commentaires	31
IV.	Enoncés des exercices	31
V.	Solutions des exercices	34
Chapi	tre III – Séries entières, propriétés de la somme	10
I.	Rappels, définitions, notations	10
1.	Rayon de convergence	10
2.	Théorème d'Abel non tangentiel	Ι1
II.	Propriétés de la somme d'une série entière à l'intérieur du disque de convergence 4	14
III.	Convergence uniforme dans tout le disque de convergence	16
1.	Conditions nécessaires de convergence uniforme	16
2.	Séries entières uniformément non normalement convergentes	١7
IV.	Comportement de la somme au voisinage d'un point du cercle de convergence 5	60
1.	Points réguliers et points singuliers	60
2.	Critères de régularité	52
3.	Séries entières à coefficients positifs	53

Table des matières VII

1.	Métriques comparables, métriques complètes	142
	Précompacité	143
	Critère fondamentaux de compacité, convergence des suites, dimension métrique	145
	Le critère fondamental de compacité	145
	Suites convergentes, dimension métrique	146
	a) Rappel	146
	b) Dimension métrique	147
3.	Etude détaillée de quelques exemples	147
4.	Le théorème de Tychonoff et ses applications	152
	a) Le théorème de Tychonoff	152
	b) Le théorème de Banach-Alaoglu	152
	c) Un théorème de point fixe	153
III.	Le théorème d'Ascoli et quelques applications	155
1.	Le théorème d'Ascoli	155
2.	Le théorème des familles normales	157
	a) L'espace métrique $H(\Omega)$	157
	b) Le théorème	160
	c) Une application du théorème des familles normales	161
IV.	Compacité dans un espace de Banach ${\cal E}$	165
1.	Enveloppe convexe d'une partie compacte	165
2.	Description des compacts d'un espace de Banach	167
3.	Bases pseudo-orthonormées.	168
V.	Applications linéaires compactes	170
1.	L'idéal bilatère $K(E)$	170
2.	Un critère de compacité	171
3.	Exemples d'applications linéaires compactes	172
4.	Adjoint d'une application linéaire compacte	174
5.	Couples (E, F) tels que $\mathcal{L}(E, F) = K(E, F)$	175
VI.	Etude individuelle d'un opérateur compact	176
	Rappels de théorie spectrale	176
2.	Un lemme fondamental	177
	Applications injectives d'image fermée	178
	Ascente et descente d'un opérateur	178
	Perturbations compactes de l'identité	179
	Spectre ponctuel d'un opérateur compact	181
	Etude spectrale d'un opérateur compact	182
	Une application des opérateurs compacts à l'Analyse	184
	Enoncés des exercices	184
	Indications	189
IX.	Solutions des exercices	192
Chapi	tre VI – Espaces vectoriels normés	203
I.	Introduction	203
II.	Théorèmes généraux	205

VIII

1.	Le théorème de Banach-Steinhaus
2.	Le théorème de l'application ouverte
3.	Le théorème du graphe fermé
4.	Les théorèmes de Hahn-Banach
	a) La forme analytique
	b) La forme géométrique
III.	Exemples d'espaces de Banach et de leurs duaux
1.	Supplémentaire d'un sous-espace fermé
	a) Sous-espaces de ℓ^{∞}
	b) Sous-espaces de ${\cal C}$
2.	Suites faiblement convergentes
3.	Rappels sur les espaces ℓ^p
IV.	Espaces de Hilbert
1.	Propriétés générales
2.	Une application
V.	Topologies faible et préfaible
1.	Le théorème général de Banach-Alaoglu
2.	Une application de la topologie faible
VI.	Énoncés des exercices
VII.	Indications
VIII.	Solutions des exercices
Chani	tre VII – Espaces vectoriels normés de dimension finie
_	Introduction et définitions
	Normes sur K^n
	Parties compactes de K^n
	Normes équivalentes
	Compacité de la boule unité
	Description géométrique des normes
	Normes sur E
	Exemples
	Inégalité de Khintchine
	Polynômes trigonométriques
	Opérateurs
	Applications
	Théorème de Riesz
	Continuité automatique
	Énoncés des exercices
	Indications
VIII.	Solutions des exercices
Chapi	tre VIII – Espaces fonctionnels
	Les espaces $C^k(\Omega)$, Ω ouvert de \mathbb{R}^n
1.	Espaces $C^k(\Omega)$, $k \in \mathbb{N}$

	a) Définitions	264
	b) Formule de Leibniz	265
	c) Formule de Faa-di-Bruno	265
	d) Topologie. Métrisabilité. Complétude	265
	e) Non normabilité	268
2.	L'espace $C^{\infty}(\Omega)$	269
	a) Topologie. Métrisabilité. Complétude	269
	b) Propriété de Montel	269
	c) Non normabilité	271
3.	L'espace $C_b^k(\Omega)$, Ω ouvert de \mathbb{R}^n	271
	Autour de la continuité et de la dérivabilité	272
	a) Points de continuité d'une fonction	272
	b) Application	272
	c) Points de continuité de la limite simple d'une suite de fonctions	274
	d) Construction d'une fonction continue nulle part dérivable	275
	e) Densité dans C^0 des fonctions continues nulle part dérivables	276
II.	Les espaces $C^k(F)$, $k \in \mathbb{N}$ F fermé de \mathbb{R}^n	278
	Définition. Normabilité. Complétude	278
	Propriétés des espaces $C^k(F)$	280
	Les espaces de Hölder	282
	Les espaces $C^{0,\alpha}(\Omega)$	282
	a) Définitions et exemples	282
	b) Propriétés des espaces $C^{0,\alpha}(\Omega)$	284
2.	Applications	286
	a) Régularité de la fonction nulle part dérivable de I.4.d)	286
	b) Régularité des fonction convexes	288
3.	Les espaces $C^{k,\alpha}(\Omega), k \in \mathbb{N}$	289
	a) Propriétés	289
4.	Résolution d'équations différentielles dans les espaces de Hölder	292
	Fonctions réel-analytiques	296
	Généralités et exemples	296
	Opérations sur les fonctions réel-analytiques	298
	Lien avec les séries entières	300
	Exemples	301
	a) Lemme de Bernstein	301
	b) Lemme de Borel	302
5.	Principe du prolongement analytique	303
	Lien avec les fonctions holomorphes	304
	Commentaires	304
	Enoncés des exercices	304
	Solutions des exercices	308
-	tre IX – Etude des fonctions définies par des intégrales	312
1.	Etude de la régularité	312

1.	Rappels
	a) Continuité
	b) Dérivabilité
	c) Holomorphie
	d) Cas des intégrales semi-convergentes
	e) Démonstrations des théorèmes
II.	Exemples et premières applications
1.	La fonction Gamma
	a) Prolongement de la fonction Γ au plan complexe
2.	Exemples
III.	Le produit de convolution
	Définitions et premières propriétés
2.	Applications de la convolution
	a) Construction de fonctions plateaux
	b) Théorèmes de densité
IV.	La transformée de Fourier
	Etude de la fonction d'Airy
	Etude asymptotique
1.	La méthode de Laplace
	a) Application : formule de Stirling
2.	La méthode de la phase stationnaire
	a) Application : étude asymptotique de la fonction d'Airy
VII.	Enoncés des exercices
VIII.	Solutions des exercices
Chani	tre X – Equations différentielles
_	Généralités
	Définitions
	Le lemme de Gronwall
	Théorie locale
	Existence et unicité
	a) Le théorème de Cauchy-Lipschitz précisé
	b) Le théorème de Arzela-Péano
2.	Dépendance par rapport aux paramètres et aux données initiales
	a) Continuité
	b) Dérivabilité
	c) Différentiabilité d'ordre supérieur
	d) Application : redressement des champs de vecteurs
	e) Commentaires
Ш	Théorie globale
	Existence et unicité de la solution maximale
	Critère de prolongement
	Exemples et applications
	Introduction à l'étude qualitative des systèmes différentiels autonomes
1 V .	introduction a reside quantative des systemes differences autonomes

1.	Introduction
2.	Définitions et notations
3.	Etude qualitative des systèmes linéaires dans \mathbb{R}^2
4.	Etude des systèmes non linéaires au voisinage d'un point d'équilibre
	a) Stabilité des solutions
	b) Le théorème de linéarisation
5.	Méthode d'étude géométrique des systèmes 2×2
	a) Protocole d'étude
	b) Affinement du protocole
V.	Application : un théorème de Hadamard
VI.	Equations différentielles $y'' + py' + qy = r$
1.	Introduction, définition, rappels
2.	Zéros des solutions
3.	Développement en série entière des solutions
4.	Stabilité. Equation de Hill-Mathieu
VII.	Enoncés des exercices
VIII.	Solutions des exercices
Chapi	tre XI – Principes du maximum et applications
	Introduction
I.	Les principes du maximum
1.	Le principe du maximum faible
2.	Le principe du maximum fort
3.	Extensions
II.	Applications
1.	Application aux fonctions holomorphes
2.	Application au problème de Dirichlet
	Le théorème des trois cercles de Hadamard
4.	Le théorème des trois droites
5.	Le théorème de Riesz-Thorin
6.	Applications du théorème de Riesz-Thorin
	a) Transformée de Fourier
	b) Convolution
Chapi	tre XII – Le théorème des nombres premiers
	La fonction dzéta de Riemann
	Les fonctions φ et Φ
	Preuves du théorème des nombres premiers et du corollaire
	Preuve du lemme 2.5
	tre XIII – Théorèmes limites en Probabilité. Applications à l'Analyse
	Rappels et compléments
	Le modèle de Kolmogorov
1.	a) Définitions
	b) Théorème d'unicité; semi-continuité
	b) Theorems a difference semi-continuite

	c) Espace produit et fubinisation	503
	d) Variable aléatoire et loi image	504
	e) Probabilité conditionnelle	505
	f) Espérance, variance, fonction caractéristique	505
	g) Inégalités de Markov et de Tchebycheff	508
2.	Le concept d'indépendance	508
	a) Définitions	508
	b) Critères d'indépendance	510
	c) Modèles pour l'indépendance et structure produit	511
	d) Le lemme de Borel-Cantelli et loi du zéro-un	512
3.	Lois classiques	513
	a) L'air du catalogue	513
	b) Lois gaussiennes	514
4.	Inégalités fondamentales	517
	a) Inégalité de Paley-Zygmund	517
	b) Inégalités de Khintchine pour les Rademacher	518
	c) Inégalités de Khintchine pour variables centrées bornées	519
	d) Théorème de majoration	519
	e) Théorème de minoration	520
II.	Convergences et outils associés	521
1.	Convergence en probabilité	521
	a) Définitions et propriétés	521
	b) Loi faible des grands nombres	523
	c) Polynômes de Bernstein	524
2.	Convergence presque sûre	525
	a) Définition et propriétés	525
	b) Inégalités maximales	527
	c) Théorèmes de Kolmogorov	529
	d) Loi forte des grands nombres	532
	e) Loi du logarithme itéré	535
3.	Convergence en loi	542
	a) Définitions équivalentes	542
	b) Théorème de P. Lévy	544
	c) Comparaison des modes de convergence	546
	d) Théorème de la limite centrale	548
III.	Applications des Probabilités à l'Analyse	550
1.	Séries entières avec une coupure	550
2.	Suites équidistribuées sur un compact	552
3.	Sommes tronquées de l'exponentielle	554
4.	Sous-espaces hilbertiens de ℓ_{∞}^n	554
5.	Conjecture de Bloch-Nevanlinna	556
6.	Nombres normaux	559
7.	Séries trigonométriques lacunaires	560

IV.	Enoncés des exercices	32
V.	Solutions des exercices 57	71
Chapt	er XIV – Compléments sur les fonctions holomorphes 58	30
I.	Introduction	30
II.	Le lemme de Schwarz	30
	Le lemme de Schwarz usuel	30
2.	Le lemme de Schwarz-Pick	31
	a) La distance pseudo-hyperbolique	32
	b) Utilisation de la distance pseudo-hyperbolique	34
III.	Le lemme de Julia	35
IV.	Trois théorèmes importants	37
1.	Le théorème d'Hurwitz	37
2.	Le théorème des familles normales	39
3.	Le théorème de Rouché	90
V.	Homographies 55	91
1.	Étude générale	91
2.	Un exemple	94
VI.	Enoncés des Exercices	96
VII.	Solutions des exercices	98
Chapt	er XV – Dynamique discrète	01
I.	Introduction	01
1.	Analogie avec les équations différentielles	01
2.	Nature des points fixes	Э3
II.	Théorèmes de conjugaison)5
1.	Problème général)5
2.	Cas attractif strict)5
3.	Cas super-attractif)7
4.	Cas indifférent 60)7
III.	Théorème de Denjoy-Wolff)9
1.	Position du problème et énoncé)9
2.	Le cas des automorphismes	10
3.	Le cas des non-automorphismes 6	12
	a) Le petit théorème de Denjoy-Wolff	12
	b) Le grand théorème de Denjoy-Wolff	13
IV.	Le théorème de Julia-Carathéodory	14
	Un exemple détaillé	16
	Enoncés des Exercices	17
VII.	Solutions des exercices	20
Chapt	er XVI – La méthode des caractéristiques	24
I.	Introduction	24
II.	Le théorème	25
III.	Quelques rappels de Calcul Différentiel	25

XIV

1.	Le théorème des fonctions implicites	625
2.	Hypersurfaces	625
3.	Champ de vecteurs et courbes intégrales	626
IV.	La méthode des caractéristiques	628
V.	Un exemple classique	631
1.	Étude locale du lieu d'explosion	633
Chapt	er XVII – Le système de ondes de surface	637
I.	Introduction	637
1.	Problème posé par l'Académie des Sciences en 1813	637
2.	Les ondes de surface.	637
3.	Quelques types de vagues	638
II.	La modélisation	638
1.	Les équations	639
	1.1. L'équation du mouvement	639
2.	L'incompressibilité.	640
3.	L'irrotationalité	643
	3.1. Une conséquence de l'irrotationalité.	644
4.	Les conditions au bord	645
5.	Le système en (η, v)	647
6.	Conservation de l'energie.	647
7.	Cas des fluides irrotationnels. Le système en (η,ϕ)	649
III.	Approximation linéaire	651
1.	Le mouvement des particules de fluide	655
Bibliog	graphie	657
Index		659

Avant-propos

Le livre

La préparation à l'Agrégation constitue généralement, pour le futur candidat, une période de bilan et de synthèse des connaissances de base qu'il a acquises au cours de ses précédentes années d'étude. Elle est aussi l'occasion d'enrichir et de dépasser ces connaissances. L'objectif de ce livre d'Analyse, qui est le fruit de l'expérience des auteurs dans ce domaine et ce type d'enseignement, comme préparateurs ou comme membres du jury du concours, est de tenter de l'y aider. Trois principes nous ont guidés dans la rédaction de cet ouvrage.

En premier lieu, insister sur des points classiques qui nous ont paru être, en général, mal connus ou mal compris des étudiants : notion de limite supérieure, précompacité, théorèmes de convergence des intégrales, théorie globale des systèmes différentiels non linéaires, etc...

Ensuite, donner le maximum d'exemples et d'applications moins habituels : fonction ζ de Riemann, fonction d'Airy, équations de Hille-Mathieu, sommes de Gauss, séries de Fourier lacunaires, méthodes probabilistes, etc...

Enfin, fournir des compléments ouvrant la voie à des théories plus avancées tout en n'utilisant que des outils classiques : principe du maximum, interpolation, géométrie des espaces de Banach, théorie de Riesz des opérateurs compacts, méthode des caractéristiques, etc...D'autre part, afin de favoriser l'assimilation, ce livre contient aussi plus de cent trente exercices ou longs problèmes (très souvent inédits) entièrement corrigés.

Cette nouvelle édition se compose de dix-sept chapitres, à l'intérieur desquels on s'est cependant permis d'utiliser des outils provenant d'autres chapitres ou d'autres théories. Les énoncés des exercices sont suivis des indications puis des solutions et occupent la fin de chacun d'entre eux.

Bien que volumineux, ce livre ne prétend nullement à l'exhaustivité, et son contenu a fait l'objet de choix de la part des auteurs. Il n'a donc pas pour objectif de se substituer entièrement aux traités classiques d'Analyse. En revanche sur les sujets choisis, tant par le fond que par la forme, cet ouvrage apporte un nombre important d'informations nouvelles.

Tout en étant écrit pour les agrégatifs (internes ou externes), ce livre peut être utilisé avec profit par un public plus large : élèves des classes préparatoires et des grandes écoles, étudiants en Licence et Mastère, enfin jeunes chercheurs, auxquels il pourra apporter, en particulier, illustrations et motivations pour des théories plus avancées.

La saisie et la mise en page des premières éditions de ce texte ont été l'oeuvre de Mme A. Bardot, décédée depuis. Nous prenons l'occasion pour

rendre hommage à sa gentillesse, sa disponibilité, sa grande compétence et sa maîtrise de TEX, qui nous ont été indispensables pendant l'élaboration des premières éditions, avant que nous n'apprenions nous-mêmes la frappe mathématique.

La quatrième édition de 2013 comportait déjà trois chapitres supplémentaires, chapitre XIV (rappels et compléments sur les fonctions holomorphes), chapitre XV (initiation à la dynamique holomorphe, notion de conjugaison, théorème de Denjoy-Wolff), chapitre XVI (en utilisant des notions élémentaires de géométrie différentielle, on prouve l'existence et l'unicité de certaines équations aux dérivées partielles d'un type particulier par la méthode des caractéristiques).

Nous avons mis à profit cette cinquième édition 2020 pour éliminer quelques (ultimes?) coquilles résiduelles, pour étoffer la présentation du chapitre IV (notamment motiver l'introduction des différents noyaux trigonométriques), et donner au chapitre XIII une version plus générale de la loi du logarithme itéré. Nous avons également ajouté aux seize chapitres existants un dix-septième chapitre "Le système des ondes de surface" dans lequel, à partir des lois classiques de la physique, on décrit mathématiquement le comportement de différents types de vagues à la surface d'un océan (marées, vagues de vent, tsunamis..).

Nous espérons ainsi, en nous inspirant des nouveaux programmes de l'agrégation (dans lesquels les probabilités, la transformée de Fourier, la dynamique discrète, les distributions et donc les équations aux dérivées partielles jouent un rôle renforcé) rendre l'emploi de ce livre plus accessible et plus profitable, pour un large public d'étudiants.

Les auteurs, Juin 2020

Les auteurs

- Hervé Queffélec est Professeur émérite à l'Université de Lille. Il est l'auteur de plusieurs livres d'enseignement comme "Analyse complexe" (avec M. Queffélec, Calvage et Mounet 2019), "Topologie" (Dunod, sixième édition, à paraître en 2020), ou "Twelve landmarks of Twentieth Century Analysis" (avec D. Choimet, Cambridge 2015). Il est également l'auteur de trois livres de recherche ("Dirichlet series and diophantine approximation", avec M.Queffélec, Hindustan Book Agency, à reparaître en 2020), "Banach spaces for analysts" (Volumes 1 et 2, Cambridge 2018, avec D. Li). Ses thèmes de recherche sont l'analyse harmonique commutative, la théorie des opérateurs sur des espaces de Banach de fonctions analytiques, la théorie analytique des séries de Dirichlet et la théorie analytique des nombres.
- Claude Zuily est Professeur émérite à l'Université de Paris Saclay. Il est l'auteur de livres d'enseignement comme "Elements de distributions et d'équations aux dérivées partielles" (Dunod 2002), "Problèmes de distributions et d'équations aux dérivées partielles (Hermann 1978, Cassini 2010)

et de livres de recherche comme "Uniqueness and non uniqueness in the Cauchy problem" (Birkhäuser 1983), "Tools and problems in partial differential equations" (avec Thomas Alazard, Springer 2020). Ses thèmes de recherche portent sur les équations aux dérivées partielles linéaires et non linéaires.

Chapitre I

Notion de plus petite et de plus grande limite

I. – Introduction

Ce fut une mini-révolution quand K. Weierstrass, pour étudier les notions de convergence en Analyse, introduisit le langage :

(I.1) quel que soit epsilon positif, il existe êta positif tel que ...

Ce langage a contre lui sa relative lourdeur, mais pour lui sa très grande rigueur; il a parfois donné lieu à des abus : on part de $\varepsilon/1000$, de façon arbitraire, et après des calculs longs et obscurs, on arrive pile à : inférieur ou égal à ε . L'introduction des notions de $\underline{\lim}$, $\overline{\lim}$ représente un peu la version "épurée" de (I.1), tout en mettant en évidence l'importance des **inégalités** a **priori** en Analyse : il y a un grand coup de barbe pour définir ces notions, puis un théorème fondamental de passage à la $\underline{\lim}$ ou à la $\overline{\lim}$ dans une inégalité (qui mérite le nom de théorème plus par son utilité que par sa preuve) et ensuite on récupère la rigueur de (I.1) avec la lourdeur en moins. Enfin, les notions de $\underline{\lim}$, $\overline{\lim}$ interviennent automatiquement dans certains énoncés fondamentaux (formule de Hadamard pour le rayon de convergence d'une série entière, lemme de Fatou, lemme de Borel-Cantelli en Calcul des Probabilités, etc.).

II. – Théorèmes et définitions

1. Limite supérieure et limite inférieure

Soit $\overline{\mathbb{R}} = [-\infty, +\infty]$ la droite numérique achevée; c'est un espace compact dont la topologie peut être définie par la distance :

 $d(x,y) = |\operatorname{Arctg} x - \operatorname{Arctg} y|$ avec les conventions $\operatorname{Arctg}(-\infty) = -\frac{\pi}{2}$, $\operatorname{Arctg}(+\infty) = +\frac{\pi}{2}$.

Soit $(u_n)_{n\geq 0}$ une suite de nombres réels : $u_n\in\mathbb{R}=]-\infty,\infty[$. On va voir qu'on peut **toujours** associer à cette suite deux uniques éléments ℓ,L de $\overline{\mathbb{R}}$:

 ℓ s'appelle la plus petite limite (ou limite inférieure) de (u_n) et se note $\underline{\lim} u_n$ ou lim inf u_n . L s'appelle la plus grande limite (ou limite supérieure) de (u_n) et se note $\overline{\lim} u_n$ ou lim sup u_n .

Théorème II.1. Soit $(u_n)_{n\geq 0}$ une suite de réels. Alors il existe un unique L de \mathbb{R} tel que, λ désignant un élément de \mathbb{R} :

(II.1)
$$\begin{cases} a) & (\forall \lambda > L) \ (\exists n_0) \ (\forall n \ge n_0) : u_n \le \lambda \\ b) & (\forall \lambda < L) \ (\forall n_0) \ (\exists n \ge n_0) : u_n \ge \lambda. \end{cases}$$

De même, il existe un unique ℓ de $\overline{\mathbb{R}}$ tel que, λ désignant un élément de \mathbb{R} :

(II.2)
$$\begin{cases} a) & (\forall \lambda < \ell) \ (\exists n_0) \ (\forall n \ge n_0) : u_n \ge \lambda \\ b) & (\forall \lambda > \ell) \ (\forall n_0) \ (\exists n \ge n_0) : u_n \le \lambda. \end{cases}$$

(II.3) On a toujours
$$\ell \leq L$$
.

(II.4)
$$(u_n)$$
 converge vers $u \in \overline{\mathbb{R}} \Leftrightarrow \ell = L = u$.

PREUVE. (II.1) : si une partie non vide A de \mathbb{R} est non majorée, on convient que sa borne supérieure sup A est $+\infty$; si elle est non minorée, on convient que sa borne inférieure inf A est $-\infty$; avec ces conventions, posons :

(II.5)
$$L := \inf_{n \ge 0} \left(\sup_{k > n} u_k \right) =: \inf_{n \ge 0} v_n.$$

- a) Soit $\lambda > L$ (un tel λ n'existe pas si $L = +\infty$ et il n'y a alors rien à vérifier!); par définition d'une borne inférieure, $\exists n_0$ tel que $v_{n_0} \leq \lambda$, d'où $u_n \leq v_{n_0} \leq \lambda$ si $n \geq n_0$.
- b) Soit $\lambda < L$ (un tel λ n'existe pas si $L = -\infty$ et il n'y a alors rien à vérifier!) et soit $n_0 \geq 0$; $v_{n_0} \geq L > \lambda$, donc il existe $n \geq n_0$ tel que $u_n \geq \lambda$. Cela montre l'existence d'un L vérifiant (II.1); réciproquement, soit $L' \in \mathbb{R}$ vérifiant (II.1).
- Si L' < L, il existe $\lambda \in \mathbb{R}$ tel que $L' < \lambda < L$; d'après (II.1) a) pour L', il existe $n_0 \geq 0$ tel que $n \geq n_0 \Rightarrow u_n \leq \lambda$ et donc $v_{n_0} \leq \lambda$; (II.5) entraı̂ne alors : $L \leq v_{n_0} \leq \lambda$, ce qui est absurde.

Si L < L', il existe $\lambda \in \mathbb{R}$ tel que $L < \lambda < L'$; d'après (II.1) b) pour L', on a $v_{n_0} \ge \lambda$ pour tout $n_0 \ge 0$, donc d'après (II.5), $L \ge \lambda$, ce qui est de nouveau absurde; et donc L = L'.

 \Diamond

(II.2): la preuve de l'existence et de l'unicité est similaire, en posant cette fois:

(II.6)
$$\ell := \sup_{n \ge 0} \left(\inf_{k \ge n} u_k \right) =: \sup_{n \ge 0} w_n.$$

(II.3) : Soit m, n deux entiers ≥ 0 et soit $p = \sup(m, n)$. Par définition, (v_n) est une suite décroissante et (w_n) une suite croissante; donc en utilisant l'inégalité inf $A \leq \sup A$ avec $A = \{u_p, u_{p+1}, \ldots\}$ on obtient :

$$(II.7) w_m \le w_p \le v_p \le v_n.$$

Fixant n et passant au sup sur m dans (II.7) on obtient

(II.8)
$$\ell \leq v_n.$$

Passant à l'inf sur n dans (II.8), on obtient via (II.5) : $\ell \leq L$.

(II.4) : \Leftarrow Pour plus de clarté limitons-nous au cas où la valeur commune u de ℓ et L se trouve dans $\mathbb R$ et donnons-nous $\varepsilon > 0$:

- (II.1) a) entraı̂ne l'existence de n_0 tel que : $\forall n \geq n_0 : u_n \leq u + \varepsilon$,
- (II.2) a) entraı̂ne l'existence de n_1 tel que : $\forall n \geq n_1 : u_n \geq u \varepsilon$.

Si $n_2 = \max(n_0, n_1)$, on voit donc que : $\forall n \geq n_2 : u - \varepsilon \leq u_n \leq u + \varepsilon$, soit encore : $\forall n \geq n_2 : |u_n - u| \leq \varepsilon$. Ceci prouve que $u_n \to u$.

⇒ La preuve est analogue, et laissée au lecteur.

2. Passage à la lim ou lim dans une inégalité

L'utilité des notions de <u>lim</u> ou lim tient d'une part à leur existence toujours garantie (contrairement à celle de lim), d'autre part à leur souplesse d'utilisation illustrée par le :

Théorème II.2. (Principe de passage à la <u>lim</u> ou à la <u>lim</u> dans une inégalité)

Soit $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ deux suites de réels telles que

(II.9)
$$\exists n_0; \quad \forall n \geq n_0 : a_n \leq b_n.$$

On a alors la conclusion

(II.10)
$$\begin{cases} a) & \overline{\lim} a_n \leq \overline{\lim} b_n \\ b) & \underline{\lim} a_n \leq \underline{\lim} b_n . \end{cases}$$

PREUVE. a) Posons $L = \overline{\lim} a_n$, $L' = \overline{\lim} b_n$ et supposons L > L'. Soit λ_1, λ_2 deux réels tels que $L > \lambda_1 > \lambda_2 > L'$. D'après (II.1) a) et (II.1) b) :

(II.11)
$$\exists p \geq n_0 \text{ tel que } \forall n \geq p : b_n \leq \lambda_2$$

(II.12)
$$\exists q \geq p \quad \text{tel que } a_q \geq \lambda_1.$$

D'où $b_q \leq \lambda_2 < \lambda_1 \leq a_q$, ce qui donne $b_q < a_q$ et contredit (II.9), prouvant ainsi a) par l'absurde.

b) se prouve de la même façon.

\Diamond

Exemples.

(II.13) Si
$$u_n = (-1)^n$$
, $\underline{\lim} u_n = -1$ et $\overline{\lim} u_n = +1$.

(II.14) Si
$$u_n = n$$
, $\underline{\lim} u_n = \overline{\lim} u_n = +\infty$.

- (II.15) Si $u_n = \cos(2\pi n\theta)$ avec $0 < \theta \le 1$, il y a deux cas à distinguer :
- a) θ irrationnel $\Rightarrow \underline{\lim} u_n = -1$ et $\overline{\lim} u_n = +1$. (On utilise la densité de $\mathbb{Z}\theta + \mathbb{Z}$ dans \mathbb{R} .)
- b) $\theta = \frac{p}{q}$ avec p,q entiers > 0 premiers entre eux $\Rightarrow \underline{\lim} u_n = \alpha$, $\overline{\lim} u_n = 1$ avec $\alpha = \min_{0 \le r < q} \left(\cos 2\pi \frac{r}{q}\right)$. (On effectue la division euclidienne de np par q; noter que $\alpha = -1$ si q est pair, en faisant $r = \frac{q}{2}$.)

Remarques.

- (II.16) $\lim u_n = +\infty$ équivaut à dire que (u_n) n'est pas majorée, ou encore qu'on peut trouver une suite extraite $(u_{n_k})_{k\geq 1}$ telle que $\lim_{k\to\infty} u_{n_k} = +\infty$. Donc, $\overline{\lim} u_n < +\infty$ équivaut à dire que (u_n) est majorée.
- (II.17) $\underline{\lim} u_n = +\infty$ équivaut à dire que $u_n \to \infty$. Donc $\underline{\lim} u_n < +\infty$ équivaut à dire que u_n ne tend pas vers $+\infty$, soit encore qu'on peut trouver une suite extraite $(u_{n_k})_{k\geq 1}$ qui est majorée.
- (II.18) On a défini $\underline{\lim}$, $\overline{\lim}$ pour des suites; mais on peut faire la même chose pour une application $f:A\to\mathbb{R}$, avec $A\subset\mathbb{R}$, x_0 point d'accumulation de A dans $\overline{\mathbb{R}}$. On obtient alors

 $\ell = \underline{\lim_{x \to x_0 \atop x \in A}} f(x)$ et $L = \overline{\lim_{x \to x_0 \atop x \in A}} f(x)$ tels que, V désignant un voisinage de x_0

(II.19)
$$\begin{cases} a) & (\forall \lambda > L) \ (\exists V) \ (\forall x \in V \cap A) : f(x) \le \lambda \\ b) & (\forall \lambda < L) \ (\forall V) \ (\exists x \in V \cap A) : f(x) \ge \lambda. \end{cases}$$

(II.20)
$$\begin{cases} a) & (\forall \lambda < \ell) \ (\exists V) \ (\forall x \in V \cap A) : f(x) \ge \lambda \\ b) & (\forall \lambda > \ell) \ (\forall V) \ (\exists x \in V \cap A) : f(x) \le \lambda. \end{cases}$$

(Noter que dans (II.1) et (II.2) le rôle de x_0 était joué par $+\infty$, celui de A par les entiers ≥ 0 et celui de V par $\{n; n \geq n_0\} \cup \{\infty\}$.)

Si f, g sont deux applications de A dans \mathbb{R} , le théorème II.2 et sa preuve restent valables en remplaçant (II.9) par :

(II.21)
$$\exists V; \forall x \in V \cap A : f(x) \le g(x)$$

et en remplaçant (II.10) par

(II.22)
$$\begin{cases} a) & \lim_{\substack{x \to x_0 \\ x \in A}} f(x) \le \lim_{\substack{x \to x_0 \\ x \in A}} g(x) \\ b) & \lim_{\substack{x \to x_0 \\ x \in A}} f(x) \le \lim_{\substack{x \to x_0 \\ x \neq A}} g(x). \end{cases}$$

(II.23) Revenons aux suites; ℓ (resp. L) est la plus petite (resp. la plus grande) valeur d'adhérence de (u_n) dans $\overline{\mathbb{R}}$; en particulier si F est un fermé de $\overline{\mathbb{R}}$ tel que $u_n \in F$ pour tout $n \geq 0$, alors $\ell \in F$ et $L \in F$. Enfin, ℓ ou L ne dépendent pas des premiers termes de la suite (u_n) .

III. – Applications

1. Suites sous-additives

Exemple III.1. Soit $(u_n)_{n\geq 0}$ une suite de réels positifs telle que :

(III.1)
$$u_{n+p} \le u_n + u_p, \ \forall n, p \ge 0.$$

Alors $\frac{u_n}{n}$ tend vers une limite $a \in \mathbb{R}^+$.

Preuve. Posons $\ell=\varliminf\frac{u_n}{n}$; $L=\varlimsup\frac{u_n}{n}$; $a=\inf_{n\geq 1}\frac{u_n}{n}$. Nous allons montrer que :

(III.2)
$$\ell \geq a$$
; et $L \leq a$.

La première inégalité est évidente : $n \ge 1 \Rightarrow \frac{u_n}{n} \in F := [a, \infty]$ et on applique (II.23).

Pour la seconde inégalité, on fixe un entier $m \geq 1$ et on effectue la division euclidienne de n par m: n = mq(n) + r(n) avec $0 \leq r(n) < m$. D'après (III.1) et une récurrence $u_n \leq u_{mq(n)} + u_{r(n)} \leq q(n)u_m + u_{r(n)} \leq q(n)u_m + (m-1)u_1 + u_0 =: q(n)u_m + C$. Donc si $n \geq 1: \frac{u_n}{n} \leq \frac{q(n)}{n}u_m + \frac{C}{n}$. Passons à la $\overline{\lim}$ dans cette inégalité en notant que $\frac{q(n)}{n} \to \frac{1}{m}$; nous obtenons $L \leq \frac{u_m}{m}$. Passant maintenant à la borne inférieure sur m, on obtient la seconde inégalité de (III.2); (II.3) et (II.4) montrent alors que $\frac{u_n}{n}$ tend vers a. \diamondsuit

Remarque. On peut remplacer l'hypothèse de sous-additivité (III.1) par l'hypothèse de sous-multiplicativité : $u_{n+p} \leq u_n u_p$. On arrive cette fois à la conclusion que $\lim_{n\to\infty} u_n^{1/n}$ existe et vaut $\inf_{n\geq 1} u_n^{1/n}$. Si E est un \mathbb{C} -espace vectoriel normé complet, T un opérateur linéaire borné de E et $u_n = ||T^n||$, on a bien : $u_{n+p} = ||T^{n+p}|| \leq ||T^n|| ||T^p|| = u_n u_p$, et donc $||T^n||^{1/n}$ a une limite.

(Le théorème du rayon spectral précise la valeur de cette limite : c'est $\sup_{\lambda \in \sigma(T)} |\lambda|$, où $\sigma(T) := \{\lambda \in \mathbb{C}; T - \lambda \operatorname{Id}_E \text{ n 'a pas d'inverse dans } \mathcal{L}(E)\}$ est le spectre de T).

2. Un théorème taubérien

Exemple III.2.

Soit $(a_n)_{n\geq 0}$ une suite **décroissante** de réels positifs, $S_n = a_0 + \ldots + a_n$, $\alpha \in]0,1[$ et c>0. On a équivalence entre :

- i) $a_n \sim c n^{-\alpha}$ quand $n \to \infty$.
- ii) $S_n \sim c \frac{n^{1-\alpha}}{1-\alpha}$ quand $n \to \infty$.

 $(u_n \sim v_n \text{ signific comme d'habitude que } u_n = v_n + o(v_n) \text{ quand } n \to +\infty).$

PREUVE. i) \Rightarrow ii) est classique et utilise seulement la positivité des a_n , pas leur décroissance. Pour la réciproque, posons $\ell = \underline{\lim} n^{\alpha} a_n$ et $L = \overline{\lim} n^{\alpha} a_n$.

Soit $\delta>1$ et $m=[\delta n]$ (où [] désigne la partie entière). Puisque (a_n) décroît :

$$S_m - S_n = a_{n+1} + \ldots + a_m \le (m-n) a_n \le (\delta - 1) n a_n.$$

D'où pour $n \geq 1$, $n^{\alpha} a_n \geq \frac{1}{\delta - 1} n^{\alpha - 1} (S_m - S_n)$, soit

(III.3)
$$n^{\alpha} a_n \ge \frac{1}{\delta - 1} \left[\left(\frac{n}{m} \right)^{\alpha - 1} m^{\alpha - 1} S_m - n^{\alpha - 1} S_n \right].$$

Passant à la <u>lim</u> dans (III.3) et utilisant le fait que $m \sim \delta n$ quand $n \to \infty$, on obtient :

(III.4)
$$\ell \ge \frac{1}{\delta - 1} \left[\delta^{1 - \alpha} \frac{c}{1 - \alpha} - \frac{c}{1 - \alpha} \right] = \frac{c}{1 - \alpha} \frac{\delta^{1 - \alpha} - 1}{\delta - 1}.$$

Passant maintenant à la lim dans (III.4) quand δ tend vers 1 par valeurs supérieures, on obtient :

(III.5)
$$\ell \ge \frac{c}{1-\alpha}(1-\alpha) = c.$$

Soit $\delta \in]0,1[$ et $m=[\delta n].$ On a cette fois :

$$S_n - S_m = a_{m+1} + \ldots + a_n \ge (n-m)a_n$$

d'où pour $n \ge 1$:

(III.6)
$$n^{\alpha} a_n \le \frac{1}{1 - \frac{m}{n}} \left[n^{\alpha - 1} S_n - m^{\alpha - 1} S_m \left(\frac{n}{m} \right)^{\alpha - 1} \right].$$

Le passage à la $\overline{\lim}$ dans (III.6) donne :

(III.7)
$$L \le \frac{1}{1-\delta} \left[\frac{c}{1-\alpha} - \frac{c}{1-\alpha} \delta^{1-\alpha} \right] = \frac{c}{1-\alpha} \left[\frac{1-\delta^{1-\alpha}}{1-\delta} \right].$$

Passant maintenant à la lim dans (III.7) quand δ tend vers 1 par valeurs inférieures, on obtient :

(III.8)
$$L \le \frac{c}{1-\alpha} (1-\alpha) = c.$$

(II.3), (III.5) et (III.8) entraı̂nent $\ell=L=c$; puis (II.4) implique $\lim_{n\to\infty}n^{\alpha}a_n=c$, ce qui prouve i). \diamondsuit

Remarques.

- (III.9) On a réussi à prouver l'implication relativement délicate ii) \Rightarrow i) sans découper un seul epsilon en mille morceaux.
- (III.10) La condition **taubérienne** de décroissance est essentielle, comme le montre l'exemple $a_n = \begin{cases} n^{-1/2} & \text{si } n \text{ est pair } \geq 1\\ 0 & \text{sinon.} \end{cases}$

Un calcul simple montre que $S_n \sim \frac{1}{\sqrt{2}} \sum_{1 \le k \le \frac{n}{2}} \frac{1}{\sqrt{k}} \sim \frac{1}{\sqrt{2}} 2\sqrt{\frac{n}{2}} = \sqrt{n}$, donc

ii) a lieu avec $c = \alpha = \frac{1}{2}$, alors que i) est clairement en défaut.